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1 Introduction -

In digital images there are multiple sources of noise. 7/

Typically, the noise increases on increasing ths ISO but - mge+ ‘ T e atentimage

some noise is still observable at lower 1SOs as well, ) —

especially in underexposed regions of the image. Also, (—  Yicomuredimge

it is often the case that there are patterns in noise — — —

speci ¢ to the camera being used. While it's true that = ~:uenoise

on increasing the 1SO, random noise dominates; xed @) (b)

pattern noise is more observable at lower ISOs. While

there exists a large body of work that models noise Figure 1: la shows image formation model.X is the

as independent and Guassian at every pixel, it is not latent image, N is the latent noise, which add to give

completely true, especially at lower 1SOs. the captured image Y. 1b shows the corresponding
Camera noise can be observed in isolation by cap-graphical model.

turing dark frames, i.e., by taking images with shutter

closed or lens cap on. A naive method to remove noise

is to simply subtract the dark frame from a captured v v v

image [2]. One can improve upon it by capturing a vy 1 fo o P

number of dark frames, taking their average and tgen POGYIN) = Z (AMiin;)) . (A ;) _ (Axizyiini))

subtracting it from the captured image. However, in K Y '

this work we aim to model the noise statistics better where the “rst two products are over all pairs of

and couple it with natural image statistics to perform adjacent pixels (in noise image and original image re-

denoising. spectively) and the third product runs over all pixels
Image denoising is a hot area of research in imageinvolving triplets of noise, image and captured data.

processing community. However, the focus of major- However, under our additive model A(x;;y;; n;) is non

ity of work has been to model natural image statistics zero only if y; = X; + n;. Under that assumption,

while assuming Gaussian per pixel independent noiseone can write the above model in simpli ed equivalent

[3]. Here, we take a complimentary approach where we form:

primarily focus on learning and modeling noise.
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¥ : Captured Image
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POGYINY= o5 (Aiin))  (Alyii nisy; i )
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2 Overview Given Y, we want to infer X and N that maximize

We assume that in the image formation process, noise the above probablity, or equivalently minimize the neg-
is additive (Figure 1a). The captured imageY is gen- altlve log of above probability. Hence the solution is
erated by adding together latent (denoised) imagex 9iven by « «
and latent noise N, 1e- argmin(i ~ 1og(A(ing)i  Tog(Alyii niiyii )

Y=X+N g g

or, one can write it as
The corresponding graphical model is shown in Fig- X X

ure 1b. Note that the graphical model assumes only argmin  A(ni;n;)) + Alyii nisyii ny)
pairwise interactions between the pixels in the latent N
noise and the latent image. From the graphical model, where A(ni;nj) and A(y; i ni;yj i nj) are arbi-
one can write trary functions. Note that while the "rst term captures



the statistics of noise, the second term depends on the
statistics of natural images. Lets look at each of them
separately.

1. Noise statistics

The naive technique of subtracting dark frames
suggests that certain pixels are likely to have more
noise than other pixels. Given a number of dark
frames, one can calculate the probablility distri-

bution over noise for each pixel, i.e., one can cal-
culate P;(n;). Given this, one simple choice of
A(ni;n;) is

A(ni;n;) = i log(Pi(ni)) i log(P;j(n;))

However, noise in adjacent pixels tends to be cor-
related. Hence, one can also add another term to
the above function that encourages adjacent pix-
els to have similar noise.

A(niing) = i log(Pi(ni))i log(P; (m; )+ fij (nisnj)

For e.g. a very simple choice forf;; (n;;n;) could
be jn; i n;jj. However, ideally one would like to
calculate a separatef;; for every pair of adjacent
pixels, i.e., learn the distribution P;; (n;;n;) for
every pair of adjacent pixelsi and j. This would
also require a large amount of training data.

. Image statistics

Gradients in natural image are believed to have
a sparse distribution (A heavy tailed Gaussian to
be precise [7]). Hence, a common prior imposed
on natural image gradients is the sparsity prior.
Motivated by that, we use the following simple
function

Alyii misyp i np) =il mi)i (%0 np)j
where , contains the relative importance being
given to the image statistics vs. the noise statis-
tics. In the actual implementation, the above is

made robust by putting an upper threshold on
the function.

3

3.1 Generating Statistics

Implementation Details

| used a Canon Rebel XTi camera which is known to
exhibit signi cant banding noise. 168 dark frames were
captured in raw format and were converted to 16 bit
TIFFs. An ISO setting of 400 was used which is high

Figure 2: An example dark frame with intensity
boosted 50 times.

Figure 3: Average noise in red channel of dark frames
(boosted 50 times).

enough to exhibit some banding noise yet low enough to
avoid random sensor noise. Aperture was set t68:0 to
make sure that it is not near either of the extreme ends
where lenses typically show abnormal behaviour. An
example dark frame (with intensity boosted 50 times
to make the noise visible) is shown in Figure 2. Similar
settings were used for capturing an actual image used
as a test image for denoising results (Figure 4).

Then for every pixel, a frequency histogram over
noise values was computed. Noise values upto 2550
were considerer (in 16 bit format) and were scaled down
by a factor of 255 to reduce them to 8 bit format.
More preciselyP;(n;) was computed asnumber of dark
frames with valuen; at the i" pixel divided by the to-
tal number of dark frames. Since the noise has been
scaled down to 8 bits,n; 2 f 0;1;2;:::; 99.

Also, the average noise for red channel is shown
in Figure 3 showing that signi cant vertical banding
exists for this particular camera. The bands are still
prominent after averaging over 168 frames hint that
these bands tend to occur at speci ¢ places.

Statistics were computed independently for the three



channels. MATLAB was used to implement this part
of the project and the computed statistics (frequency
histograms) were written down to text Tes.

3.2 Running Inference

From Section 2, the function which we aim to minimize
for infering the MAP solution is given by

(i log(Pi(ni)) i log(P;j(nj))+ fi (ni;n;))

X . .
+, 0 gy m)i (i ny)j
iij

Figure 4: Test image to test denoising.

It was mentioned in Section 3.1 howP;(n;)'s are
learnt. However, even 168 dark frames are not enough
to learn fj (nj; n;) reliably (Assuming that the noise
lies in the rangef 0; 9g, one requires to compute a fre-
guency distribution over 100 values, suggesting that we
need much more than 168 frames to come up with reli-
able estimates). It was also mentioned in Section 2 that
a simple choice could be to set; (ni;n;) = jni i njj.
However, | feel that it's not a good choice asfj ap-
pears to be highly dependent on the location of the
pixels. For e.g., the presence of vertical banding sug-
gests that the correlation is stronger in vertical direc-
tion that in horizontal direction. One may get away

py learning correlation in .horiz'ontal and vertical direc- 55 the objective function here may be non-submodular,
tion siaparately. But again, since the bands occur at | ,sed a variant of the max-product LBP from the i-
speci ¢ locations, the vertical correlation itself varies brary.

with columns. Would learning vertical correlation for
each column (same across the complete length of col-
umn) and similar horizontal correlation constant along 4  Results
the complete row work? For now, | chose to drop the
correlation term altogether and the function which | Figure 4 shows the image used for denoising purposes.
hence minimize is In fact, | used only the bottom right corner of the image
X which is signi cantly underexposed (Figure 5a) and one
(i log(P(ni))i log(P(n; )+,  j(yii ni)i (Yji Nj)i can see noise on increasing the contrast (Figure 5b).
i i Figure 6 shows the recovered noise gsis increased.

As mentioned before, an image was captured using Note that if , = 0:0, the inference is equivalent to

the same settings. The RAW image was converted to having .ih_e rlnost Itlkelybrtlms;? attr(]aach pixel. I_n t?at
an 8 bit bitmap using linear scaling (It would be com- SENse, [L1s closer to subtracting the average noise from

putationally inexcient to run inference on 16 bit im- the image. As, Is increased, one can see the banding

ages as noise value would range from 1 to 2550 whichpattem in the noise starts disappearing as the image
reduces to 1 to 10 in case of 8 bit images) ' statistic term dominates and pulls the noise away from

For running the max-product loopy belief propaga- :he noise Stat'St'tC‘ I? fact, for high enough. , oped_sta;_ts
tion | used the code made available online by Szeliski tﬁ ?etﬁ ngage structures appeatrrl]r_lg |rt1hnq|se n I(t:atr:ng
et. al. [4] which is optimized for grid graphs used com- at the denosing 1s over smoothing the image at this

monly in images. The code provides several methods top0|r|1:t'. 7 sh f denoised i Th

do inference (LBP [5], Graph cuts [1], Tree Reweighted . \gure 7 Shows crops of denoised image (The mag-
Message Passing (TRW) [6], etc.). While certain meth- nitude of noise is still too small to be seen, hence en-
ods like Graph Cuts which rely on the objective func- larged crops are shown and contrast has been further

tion being submodular are not applicable in this case increased). While results with , = 0:5 and, = 1:0

Figure 5: A crop of of bottom right corner of the image
shown in Figure 4. Contrast and brightness has been
increased in the second image to make the noise visible.



(a) Lambda =0 :0 (b) Lambda =0 :5 (c) Lambda =1 :0

(d) Lambda =2 :0 (e) Lambda =4 :0

Figure 6: A crop of of bottom right corner of the image shown in Figure 4. Contrast and brightness has been
increased in the second image to make the noise visible.

(a) Original image (b) Lambda =0 :0 (c) Lambda =0 :5

(d) Lambda =1 :0 (e) Lambda =2 :0 (f) Lambda =4 :0

Figure 7: Denoised results with varying, (zoomed in crop, contrast has been further increased to make the
di®erence visible). Results with, = 0:5 and, = 1:0 are signi cantly better than those with , = 0:0 (look
at the red noise on blue bacground). However, increasing beyond that leads to observable smoothing of the
output image.



are better than those with , = 0:0, one starts to see
noticable smoothing of image on increasing beyond
that.

4.1 Running Time

Running loopy belief propagation takes on average 10
seconds for each channel for a:6 megapixel image.
Hence it takes a total of 30 seconds for processing all
channels but it can be easily parallelized as the pro-
cessing of three channels is independent.

However, the statistics Tles are also quite large $
300 MB) and it takes a while to parse them. But that
time can be easily cut down by storing the statistics in
a format easier to parse than plain text.

5 Conclusion and Future Work

While it was encouraging to see some pattern in noise
which goes against the commonly made assumption of
independent Gaussian noise, the magnitude of noise
is still too small to see in any appreciable di®erence
in most images under normal circumstances (without
stretching the contrast to extreme limits). Also, it
seems that testing on 1ISO 100 is probably worthwhile
where the banding noise would dominate even more.

But in general case, image noise would be sum of[6]
banding (patterned) noise augmented with random noise.

Hence while simply removing the banding noise does
not make much of di®erence, augmenting it with other
denoising algorithms that remove random noise as well
should result in a better performance.

The parameter , , even though helpful, is bound to

label set (10 in this case). Hence, there might be sig-
ni cant exciency gains to be had from this approach.
On the other hand, the objective function here is non-
submodular disallowing certain fast algorithms like Graph
Cuts.
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lead to some loss of sharpness of the image. Ideally, one

would not want to make any assumption about statis-
tics of the underlying image. However, we need some
way to use the captured data, i.e., the evidence (For e.g.
in our case, if we set, =0, inference is independent of
Y which implies that it'll lead to the same solution for
every image). | am not sure how exactly to go about it.
One approach could be an interactive one, where the

user speci es smooth regions of image so that some

noise values can be grounded. With this evidence, one
can hopefully infer the rest of noise values solely using
the noise statistics. However, we might need to capture
statistics over a larger neighborhood than simply pair-
wise interactions consequentially implying much larger
training data.

There is another interesting aspect of this approach.
Inference based denoising algorithms often directly used
image intensities as labels implying that there are 256

possible labels for each pixel. However, if we use noise

values as labels then we end up with a much smaller



