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1 Introduction

In digital images there are multiple sources of noise.
Typically, the noise increases on increasing ths ISO but
some noise is still observable at lower ISOs as well,
especially in underexposed regions of the image. Also,
it is often the case that there are patterns in noise
speci¯c to the camera being used. While it's true that
on increasing the ISO, random noise dominates; ¯xed
pattern noise is more observable at lower ISOs. While
there exists a large body of work that models noise
as independent and Guassian at every pixel, it is not
completely true, especially at lower ISOs.

Camera noise can be observed in isolation by cap-
turing dark frames, i.e., by taking images with shutter
closed or lens cap on. A naive method to remove noise
is to simply subtract the dark frame from a captured
image [2]. One can improve upon it by capturing a
number of dark frames, taking their average and then
subtracting it from the captured image. However, in
this work we aim to model the noise statistics better
and couple it with natural image statistics to perform
denoising.

Image denoising is a hot area of research in image
processing community. However, the focus of major-
ity of work has been to model natural image statistics
while assuming Gaussian per pixel independent noise
[3]. Here, we take a complimentary approach where we
primarily focus on learning and modeling noise.

2 Overview

We assume that in the image formation process, noise
is additive (Figure 1a). The captured imageY is gen-
erated by adding together latent (denoised) imageX
and latent noise N , i.e.,

Y = X + N

The corresponding graphical model is shown in Fig-
ure 1b. Note that the graphical model assumes only
pairwise interactions between the pixels in the latent
noise and the latent image. From the graphical model,
one can write

(a) (b)

Figure 1: 1a shows image formation model.X is the
latent image, N is the latent noise, which add to give
the captured image Y . 1b shows the corresponding
graphical model.

P(X ; Y ; N ) =
1
Z

Y

i;j

(Á(ni ; nj ))
Y
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(Á(x i ; x j ))
Y

i
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where the ¯rst two products are over all pairs of
adjacent pixels (in noise image and original image re-
spectively) and the third product runs over all pixels
involving triplets of noise, image and captured data.
However, under our additive modelÁ(x i ; yi ; ni ) is non
zero only if yi = x i + ni . Under that assumption,
one can write the above model in simpli¯ed equivalent
form:

P(X ; Y ; N ) =
1
Z 0

Y

i;j

(Á(ni ; nj ))
Y

i;j

(Á(yi ¡ ni ; yj ¡ nj ))

Given Y , we want to infer X and N that maximize
the above probablity, or equivalently minimize the neg-
ative log of above probability. Hence the solution is
given by

arg min
N

(¡
X

i;j

log(Á(ni ; nj )) ¡
X

i;j

log(Á(yi ¡ ni ; yj ¡ nj )))

or, one can write it as

arg min
N

X
Ã(ni ; nj )) +

X
Ã(yi ¡ ni ; yj ¡ nj )

where Ã(ni ; nj ) and Ã(yi ¡ ni ; yj ¡ nj ) are arbi-
trary functions. Note that while the ¯rst term captures
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the statistics of noise, the second term depends on the
statistics of natural images. Lets look at each of them
separately.

1. Noise statistics

The naive technique of subtracting dark frames
suggests that certain pixels are likely to have more
noise than other pixels. Given a number of dark
frames, one can calculate the probablility distri-
bution over noise for each pixel, i.e., one can cal-
culate Pi (ni ). Given this, one simple choice of
Ã(ni ; nj ) is

Ã(ni ; nj ) = ¡ log(Pi (ni )) ¡ log(Pj (nj ))

However, noise in adjacent pixels tends to be cor-
related. Hence, one can also add another term to
the above function that encourages adjacent pix-
els to have similar noise.

Ã(ni ; nj ) = ¡ log(Pi (ni )) ¡ log(Pj (nj ))+ f i;j (ni ; nj )

For e.g. a very simple choice forf i;j (ni ; nj ) could
be jni ¡ nj j. However, ideally one would like to
calculate a separatef i;j for every pair of adjacent
pixels, i.e., learn the distribution Pi;j (ni ; nj ) for
every pair of adjacent pixelsi and j . This would
also require a large amount of training data.

2. Image statistics

Gradients in natural image are believed to have
a sparse distribution (A heavy tailed Gaussian to
be precise [7]). Hence, a common prior imposed
on natural image gradients is the sparsity prior.
Motivated by that, we use the following simple
function

Ã(yi ¡ ni ; yj ¡ nj ) = ¸ j(yi ¡ ni ) ¡ (yj ¡ nj )j

where ¸ contains the relative importance being
given to the image statistics vs. the noise statis-
tics. In the actual implementation, the above is
made robust by putting an upper threshold on
the function.

3 Implementation Details

3.1 Generating Statistics

I used a Canon Rebel XTi camera which is known to
exhibit signi¯cant banding noise. 168 dark frames were
captured in raw format and were converted to 16 bit
TIFFs. An ISO setting of 400 was used which is high

Figure 2: An example dark frame with intensity
boosted 50 times.

Figure 3: Average noise in red channel of dark frames
(boosted 50 times).

enough to exhibit some banding noise yet low enough to
avoid random sensor noise. Aperture was set tof 8:0 to
make sure that it is not near either of the extreme ends
where lenses typically show abnormal behaviour. An
example dark frame (with intensity boosted 50 times
to make the noise visible) is shown in Figure 2. Similar
settings were used for capturing an actual image used
as a test image for denoising results (Figure 4).

Then for every pixel, a frequency histogram over
noise values was computed. Noise values upto 2550
were considerer (in 16 bit format) and were scaled down
by a factor of 255 to reduce them to 8 bit format.
More preciselyPi (ni ) was computed asnumber of dark
frames with valueni at the i th pixel divided by the to-
tal number of dark frames. Since the noise has been
scaled down to 8 bits,ni 2 f 0; 1; 2; :::; 9g.

Also, the average noise for red channel is shown
in Figure 3 showing that signi¯cant vertical banding
exists for this particular camera. The bands are still
prominent after averaging over 168 frames hint that
these bands tend to occur at speci¯c places.

Statistics were computed independently for the three
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channels. MATLAB was used to implement this part
of the project and the computed statistics (frequency
histograms) were written down to text ¯les.

3.2 Running Inference

From Section 2, the function which we aim to minimize
for infering the MAP solution is given by

X

i;j

(¡ log(Pi (ni )) ¡ log(Pj (nj )) + f ij (ni ; nj ))

+ ¸
X

i;j

j(yi ¡ ni ) ¡ (yj ¡ nj )j

It was mentioned in Section 3.1 howPi (ni )'s are
learnt. However, even 168 dark frames are not enough
to learn f ij (ni ; nj ) reliably (Assuming that the noise
lies in the range f 0; 9g, one requires to compute a fre-
quency distribution over 100 values, suggesting that we
need much more than 168 frames to come up with reli-
able estimates). It was also mentioned in Section 2 that
a simple choice could be to setf ij (ni ; nj ) = jni ¡ nj j.
However, I feel that it's not a good choice asf ij ap-
pears to be highly dependent on the location of the
pixels. For e.g., the presence of vertical banding sug-
gests that the correlation is stronger in vertical direc-
tion that in horizontal direction. One may get away
by learning correlation in horizontal and vertical direc-
tion separately. But again, since the bands occur at
speci¯c locations, the vertical correlation itself varies
with columns. Would learning vertical correlation for
each column (same across the complete length of col-
umn) and similar horizontal correlation constant along
the complete row work? For now, I chose to drop the
correlation term altogether and the function which I
hence minimize is
X

i;j

(¡ log(P(ni )) ¡ log(P(nj ))+ ¸
X

i;j

j(yi ¡ ni )¡ (yj ¡ nj )j

As mentioned before, an image was captured using
the same settings. The RAW image was converted to
an 8 bit bitmap using linear scaling (It would be com-
putationally ine±cient to run inference on 16 bit im-
ages as noise value would range from 1 to 2550, which
reduces to 1 to 10 in case of 8 bit images).

For running the max-product loopy belief propaga-
tion I used the code made available online by Szeliski
et. al. [4] which is optimized for grid graphs used com-
monly in images. The code provides several methods to
do inference (LBP [5], Graph cuts [1], Tree Reweighted
Message Passing (TRW) [6], etc.). While certain meth-
ods like Graph Cuts which rely on the objective func-
tion being submodular are not applicable in this case

Figure 4: Test image to test denoising.

(a) (b)

Figure 5: A crop of of bottom right corner of the image
shown in Figure 4. Contrast and brightness has been
increased in the second image to make the noise visible.

as the objective function here may be non-submodular,
I used a variant of the max-product LBP from the li-
brary.

4 Results

Figure 4 shows the image used for denoising purposes.
In fact, I used only the bottom right corner of the image
which is signi¯cantly underexposed (Figure 5a) and one
can see noise on increasing the contrast (Figure 5b).

Figure 6 shows the recovered noise as¸ is increased.
Note that if ¸ = 0 :0, the inference is equivalent to
having the most likely noise at each pixel. In that
sense, it is closer to subtracting the average noise from
the image. As ¸ is increased, one can see the banding
pattern in the noise starts disappearing as the image
statistic term dominates and pulls the noise away from
the noise statistic. In fact, for high enough¸ , one starts
to see image structures appearing in noise indicating
that the denosing is over smoothing the image at this
point.

Figure 7 shows crops of denoised image (The mag-
nitude of noise is still too small to be seen, hence en-
larged crops are shown and contrast has been further
increased). While results with ¸ = 0 :5 and ¸ = 1 :0
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(a) Lambda = 0 :0 (b) Lambda = 0 :5 (c) Lambda = 1 :0

(d) Lambda = 2 :0 (e) Lambda = 4 :0

Figure 6: A crop of of bottom right corner of the image shown in Figure 4. Contrast and brightness has been
increased in the second image to make the noise visible.

(a) Original image (b) Lambda = 0 :0 (c) Lambda = 0 :5

(d) Lambda = 1 :0 (e) Lambda = 2 :0 (f) Lambda = 4 :0

Figure 7: Denoised results with varying ¸ (zoomed in crop, contrast has been further increased to make the
di®erence visible). Results with¸ = 0 :5 and ¸ = 1 :0 are signi¯cantly better than those with ¸ = 0 :0 (look
at the red noise on blue bacground). However, increasinģ beyond that leads to observable smoothing of the
output image.
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are better than those with ¸ = 0 :0, one starts to see
noticable smoothing of image on increasinģ beyond
that.

4.1 Running Time

Running loopy belief propagation takes on average 10
seconds for each channel for a 0:6 megapixel image.
Hence it takes a total of 30 seconds for processing all
channels but it can be easily parallelized as the pro-
cessing of three channels is independent.

However, the statistics ¯les are also quite large (»
300 MB) and it takes a while to parse them. But that
time can be easily cut down by storing the statistics in
a format easier to parse than plain text.

5 Conclusion and Future Work

While it was encouraging to see some pattern in noise
which goes against the commonly made assumption of
independent Gaussian noise, the magnitude of noise
is still too small to see in any appreciable di®erence
in most images under normal circumstances (without
stretching the contrast to extreme limits). Also, it
seems that testing on ISO 100 is probably worthwhile
where the banding noise would dominate even more.

But in general case, image noise would be sum of
banding (patterned) noise augmented with random noise.
Hence while simply removing the banding noise does
not make much of di®erence, augmenting it with other
denoising algorithms that remove random noise as well
should result in a better performance.

The parameter ¸ , even though helpful, is bound to
lead to some loss of sharpness of the image. Ideally, one
would not want to make any assumption about statis-
tics of the underlying image. However, we need some
way to use the captured data, i.e., the evidence (For e.g.
in our case, if we seţ = 0, inference is independent of
Y which implies that it'll lead to the same solution for
every image). I am not sure how exactly to go about it.
One approach could be an interactive one, where the
user speci¯es smooth regions of image so that some
noise values can be grounded. With this evidence, one
can hopefully infer the rest of noise values solely using
the noise statistics. However, we might need to capture
statistics over a larger neighborhood than simply pair-
wise interactions consequentially implying much larger
training data.

There is another interesting aspect of this approach.
Inference based denoising algorithms often directly used
image intensities as labels implying that there are 256
possible labels for each pixel. However, if we use noise
values as labels then we end up with a much smaller

label set (10 in this case). Hence, there might be sig-
ni¯cant e±ciency gains to be had from this approach.
On the other hand, the objective function here is non-
submodular disallowing certain fast algorithms like Graph
Cuts.
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