
Dynamic Mosaics

Rahul Garg

University of Washington

rahul@cs.washington.edu

Steven M. Seitz

University of Washington, Google

seitz@cs.washington.edu

Abstract

Past mosaicing approaches stitch a set of photos into a

single static mosaic. We present a novel approach where we

visualize a photo collection in an interactive viewer that al-

lows the user to smoothly and seamlessly transition between

a collection of local mosaics instead of a single static mo-

saic. Such an approach works with more general photo col-

lections than possible with static mosaicing while preserv-

ing the straight lines in the scene. Moreover, the viewer dy-

namically selects optimal seams between images in a semi-

online fashion that handles misalignment, scene motion and

parallax and also recreates dynamic aspects such as mov-

ing objects and exposure changes.

1. Introduction

Image mosaicing techniques provide a way to composite

several photos into a wider field-of-view composite. When

rendered with an appropriate viewer, these techniques syn-

thesize distortion-free, perspective-correct interactive scene

visualizations. The fundamental limitation, however, is that

perspective-correct mosaicing is possible only if the cam-

era does not translate, or if the scene is planar (or distant).

Recent work on non-perspective panoramas enables more

general camera motions [21, 19, 16], at the expense of in-

troducing distortions (e.g., straight lines in the scene be-

come curved), by relaxing perspective-correctness. Rather

than introducing scene distortion, we propose to relax the

requirement that all photos be composited into a single

mosaic. We compute a collection of local mosaics that

can be interactively traversed in a new kind of dynamic

scene viewer. Further, each of these local mosaics preserve

straight lines in the scene. The key aspects of our approach

are:

• Dynamic Projection: The viewer uses a dynamic

projection model to transition between local mosaics.

Transitions are subtle as to be barely noticeable, re-

sulting in a continuous and nearly distortion-free scene

visualization. The approach generalizes to a class of

image collections which we call locally stitchable, and

subsumes rotational and translational mosaics.

• Dynamic Seam Selection and Blending: Misalign-

ment between images, scene motion and parallax lead

to ghosting artifacts in traditional mosaicing. The pro-

posed viewer dynamically selects and blends across a

set of precomputed seams to avoid artifacts and allows

us to recreate dynamic aspects of the scene, e.g., peo-

ple walking, trees waving, etc. as the user navigates.

• Dynamic Exposure Selection: Rather than removing

exposure differences entirely, the viewer dynamically

adjusts the exposure based on the part of the scene cur-

rently visible. This imitates the behavior of the human

eye, e.g., when looking at a bright light source, rest of

the scene appears dark.

We call such mosaics dynamic mosaics.

There are three major challenges that we address. First,

we pose the problem of computing a local mosaic as an opti-

mization problemwhich minimizes the distortion in the cur-

rent view and can be solved in real time. Secondly, blending

techniques (e.g., graph cuts [4], multi band blending [7])

are not fast enough to work in real-time. We come up with

a semi-online approach that allows us to do blending in real

time while recreating scene motion. Finally, we come up

with a method to dynamically compute locally optimal ex-

posure.

Mosaics are a simple form of Image Based Rendering

(IBR), a class of techniques that includesmore sophisticated

methods like lightfields [15, 11], plenoptic modeling [17],

Photo Tourism [23], and so forth. A key difference, how-

ever, is that mosaics rely only on 2D warps (homographies)

and 2D navigation (pan, zoom). This reliance on 2D warps

makes mosaics robust enough to work in practice, and the

simple 2D navigation appeals to the most users. These fac-

tors have enabled mosaics to enjoy a level of penetration

and widespread use that other IBR methods have not. Our

work seeks to achieve a greater range of behaviors (gener-

alized camera paths, scene motion, dynamic exposure) than

is possible with existing mosaic techniques, while staying

in the mosaic framework (2D warps, 2D navigation).

(a) (b)

Figure 1: Locally Stitchable Collections. (a) A locally

stitchable collection that is a combination of translational

and rotational motion. (b) Adjacent images need to be only

approximately stitchable. This shows an example of a rect-

angular room whose walls have been captured by a combi-

nation of translational and approximately rotational motion.

A single rotational mosaic will not provide a uniform sam-

pling of the walls.

(a) (b)

Figure 2: (a) Photos at either end of the collection can be

stitched into local mosaics by projecting them onto differ-

ent planar surface. (b) Our system smoothly interpolates

the planar projection as the user navigates allowing smooth

transitions between these local mosaics.

2. Overview

Let us first define locally stitchable image collections.

We consider two images as stitchable if they overlap and

can be aligned via a 2D transform, i.e., a 3× 3 homography

matrix. E.g., images captured by a rotating camera or im-

ages of a planar scene are stitchable. Consider a graph with

images as nodes and an edge between every pair of stitch-

able images. We call an image collection locally stitchable

if the resulting graph is connected (Fig. 1a).

One can relax the definition of stitchablity. E.g., two

images can be aligned well if they are taken from approxi-

mately the same spot or if the scene is approximately planar.

This allows us to extend the definition to cases like those

shown in Figure 1b. Any collection which consists of se-

quences of rotating camera or translating camera (in front

of a planar scene) is included in the definition.

We now briefly describe the three key dynamic aspects

of our system.

2.1. Dynamic Projection

Consider the photo collection shown in Figure 2a, a com-

bination of rotational and translational motion. Photos at

the left end of the collection can be composited into a ro-

tational mosaic. Similarly photos at the right end can be

composited into a translational mosaic since the scene is

planar. The proposed viewer interpolates between the two

mosaics by smoothly varying the projection as the user nav-

(a) (b)

Figure 3: (a) An arbitrary planar projection. (b) Optimized

planar projection.

igates from one end to the other. This is achieved by se-

lecting a planar projection based on the current view which

changes smoothly as the user moves around (Fig. 2b).

How should one select the optimal planar projection for

a given view? An arbitrary planar projection may lead to

geometric distortion (Fig. 3a).

We formulate the planar projection selection problem as

an optimization problem that seeks to minimize the geo-

metric distortion of images in view (Fig. 3b). A planar

projection is represented by a 3 × 3 homography matrix

H . We need to quantify the geometric distortion induced

by a homography H. For H to not introduce any affine or

perspective distortion, it should preserve the original rect-

angular shape of the input image. While this can be mea-

sured in a number of ways, one way is to see where the

horizontal direction [1, 0, 0] and vertical direction [0, 1, 0]
are mapped by H . Hence, a measure of distortion can be

||H [1, 0, 0]T − [1, 0, 0]T ||2 + ||H [0, 1, 0]T − [0, 1, 0]T ||2

(This also penalizes 2D rotation and uniform scaling which

do not introduce any affine or perspective distortion but we

talk about that later). Such a penalty can be written in the

form ||Hres − I||2 where Hres is simply H where the last

column has been replaced by [0, 0, 1]T , i.e., the translation
free part of H. This can also be interpreted algebraically –

the distance between the translation free component of H

and the identity transform. Such a penalty is also consis-

tent with Zorin and Barr’s [28] observation that for a linear

perspective camera, objects in the center of the image never

look distorted.

Given this measure of geometric distortion, the viewer

chooses a projection that minimizes a weighted sum of dis-

tortions of the images in view. We show in Section 4.1 that

such a penalty measure leads to a linear objective which can

be solved and continuously updated at frame rate as the user

navigates.

2.2. Dynamic Seam Selection and Blending

Finding optimal seams between images to avoid ghost-

ing artifacts due to scene motion and parallax is a common

approach [24, 9, 2, 1]. However, in our case we do not have

a single mosaic for which we can precompute seams before-

hand. As it is impractical to compute seams in real time for

each local mosaic we render, we precompute seams for a set

of local mosaics and then transition between those seams at

render time based on user’s viewpoint.

Such an approach has two advantages. First, the seams

are locally optimal, i.e., they prefer images which show

least distortion in the current view. Second, as we cross-

fade between different local seams as the user navigates,

it recreates the dynamic aspects of the scene like parallax

and scene motion. While the basic formulation computes

seams whose purpose is to minimize the stitching artifacts,

one can add additional constraints to explicitly control how

seams are correlated with the motion in the scene (Sec. 5.1).

Further, we also implement real time multi band blending

across these seams (Sec. 4.4).

2.3. Dynamic Exposure

Cameras in auto-mode change exposure dynamically

based on scene brightness. Exposure differences lead to

artifacts when stitching a single static mosaic and sophisti-

cated exposure adjustment and blending algorithms are re-

quired to avoid such artifacts [24, 1, 6, 14]. However, expo-

sure differences across images provide valuable cues about

variation in brightness of the different parts of the scene.

The system estimates these differences in an offline process

and uses them to dynamically adjust the exposure in the on-

line viewer as the user navigates providing a more realistic

experience.

Brown and Lowe [6] use a simple linear gain model, i.e.,

a multiplicative factor to model exposure changes which is

equivalent to multiplying the color channels of an image by

a single scalar. We relax this model by assuming that three

independent scalars can be used for the three color chan-

nels. This allows to correct for not only exposure changes

but also color balance. This is equivalent to using a diagonal

transform color correction model which suffices for many

cases [10]. We compute these scalars using an approach

similar to Brown and Lowe [6] (Section 3.4). This sim-

ple model in conjunction with seam selection and blending

avoids almost all of the artifacts.

While rendering, Kopf et al. [14] use dynamic tone map-

ping of HDR images based on the local part of the mosaic

the user is viewing. Analogously, we compute locally opti-

mal diagonal transform as the user navigates. The transform

is optimal in the sense that it tries to preserve the original

exposure and color balance of the mosaic currently in view.

We now proceed to give technical details of the approach

which can be broken down into two parts – offline process-

ing and online viewer.

3. Offline Processing

3.1. Image Matching

We match images pairwise using SIFT features and

RANSAC [12]. We declare two images to be stitchable if

the homography found by RANSAC has at least 40 inliers.

Since the graph of images is connected w.r.t. stitchability

(a) (b)

Figure 4: (a) The neighbor set S1 (images with blue border)

corresponding to image I1. It consists of images that can

be projected onto the plane of I1 to generate a local mosaic.

(b) The local mosaic generated by compositing images in

the set S1 onto the plane of I1.

(a) A corner (b) Projection on plane of I1

(c) Projection seen through virtual

camera V

(d) Single perspective

view

Figure 5: A local mosaic is a piecewise perspective projec-

tion of the scene that preserves straight lines.

relation (locally stitchable), we can determine the homog-

raphy between every pair of images by finding the shortest

path between them and chaining homographies along the

path. This may lead to accumulation of errors along long

paths but images connected by long paths are not likely to

overlap and hence such errors do not lead to stitching arti-

facts in practice.

3.2. Local Mosaics

For each image Ii, we define the set of neighbors Si as

images that can be stitched to Ii to generate a local mosaic

(Figure 4a). Let us say that Ij is compatible with Ii if the

optical axis of Ij intersects the plane of Ii in the positive di-

rection, i.e., Ij can be projected onto the plane of Ii without

flipping the image. Then, we define Si as the largest con-

nected set of images in the graph containing Ii which are

compatible with Ii. Algorithmically, we run breadth first

search starting from Ii to build the set Si.

Images in the set Si can be stitched to Ii to generate a

local mosaic (Figure 4b). We prove that each such local

mosaic is a piecewise-perspective projection of the scene

that preserves straight lines.

Notice that if the images in the neighbor set Si corre-

spond to a rotating camera or if the scene is planar, then

the resulting local mosaic is a single perspective projection.

Hence, the challenging case faced in this paper is a non pla-

nar scene captured by a camera which is not purely rotat-

ing. Such a scene can be captured by a locally stitchable

collection if a rotating camera covers the planar discontinu-

ities in the scene (Figure 5a). Let AB and CD be two line

segments in the scene on two different planes. The local

mosaic corresponding to S1 is generated by projecting all

images onto the plane of I1, thus projecting AB as A′B′

(Figure 5b). Now, while rendering, S1 is viewed through a

virtual camera V (Section 2.1) which sees the image A′B′

ofAB instead of the trueAB (Figure 5c and 5d). However,

A′B′ is also a straight line. Hence, while the two planes of

the corner appear under different perspective transforms in

V , straight lines in the scene, which are confined to these

planes, remain straight. The observation is generalizable as

long as the homographies between stitchable images cor-

respond to real world planes (holds if the image matching

does not make errors). Zelnik-Manor et al. [27] also use

such piecewise-perspective projections that are selected in-

teractively to reduce distortion in spherical panoramas.

3.3. Optimal Seams via Graph Cuts

We precompute optimal seams for each of the local mo-

saics. At render time, as the user transitions between dif-

ferent local mosaics, we crossfade between corresponding

seams.

Optimal seams should avoid stitching artifacts by mini-

mizing pixel difference across them. Further, they should

choose pixels from images which appear less distorted geo-

metrically. We formulate an objective which captures these

two goals and minimize it using Markov Random Field

(MRF) optimization using an approach similar to that of

Agarwala et al. [1]. We use ||Hres
j − I|| to quantify dis-

tortion where Hj is the homography that aligns Ij with Ii.

Further, we adjust the pixel values using the exposure com-

pensation factors we compute in Section 3.4. Computed

seams are stored as binary masks; for each Ij ∈ Si, we

have a mask Mij . At run time, we do not need to store and

load all the local mosaics, the system uses these single chan-

nel binary masks along with the input images to composite

local panoramas on the fly.

3.4. Global Exposure Compensation

Brown and Lowe [6] first find pairwise gain factors for

overlapping images by considering corresponding pixels,

and then use pairwise factors to estimate per image gain

factors by minimizing a global objective function. We use

a similar approach to estimate per channel gain factors for

each image. To estimate pairwise gain factors, we consider

all corresponding pixels and use RANSAC to estimate the

most common triplet of channel wise gain (rij , gij , bij) (rij
denotes the gain between Ii and Ij). Such an approach is

more robust than the mean used in Brown and Lowe’s ap-

proach [6]. To estimate gain per image for each channel,

e.g., ri for red channel of Ii, we consider all pairwise equa-

tions
rj
ri

= rij and solve using least squares for each color

channel independently (and setting r1 = 1). Brown and

Lowe [6] use a slightly different objective which requires

them to use a prior to encourage gains close to 1. Further,
we weigh the equations by the number of RANSAC inliers

to reflect the confidence in each equation. At run time, we

use the estimated values to compensate for exposure differ-

ences between images and compute a locally optimal expo-

sure value as the user navigates (Sec. 4.3).

4. Online Viewer

4.1. Dynamic Projection

The user interacts with the mosaic using drag and zoom

interaction. The viewer updates the projection to provide

the best view of the images currently visible in real time as

the user drags the mouse.

We first describe how dragging works. Since we use

a planar projection at all times, we can model the trans-

formation of each image by a homography. Suppose the

current transforms applied to the images I1, I2, ..., In are

H1, H2, ..., Hn respectively, i.e., these are the optimal ho-

mographies for the current view (initialization is done by

setting H1 = I and using the pairwise homographies com-

puted in Sec. 3.1), and the user drags by (δx, δy). Let

Htrans(δx, δy) be the homography that induces a trans-

lation of (δx, δy). We first apply this homography to the

current view, i.e., the new transformations of images are

Htrans(δx, δy)H1, ..., H
trans(δx, δy)Hn. Let Hi refer to

the updated transformationHtrans(δx, δy)Hi. Solving for

a new planar projection is equivalent to solving for a ho-

mography H that will be applied to all the images, i.e.,

the geometric transforms of the images under this new pro-

jection will be HH1, HH2, HH3, ..., HHn. We want to

choose anH that minimizes the distortion of images.

As described in Section 2.1, distortion of a single image

in the collection can bemeasured by ||(HHi)
res−I||.How-

ever, the global homographyH only seeks to minimize the

distortion in the images and not translate the image com-

posite. HenceH(0, 2) = H(1, 2) = 0, i.e., the last column

of H is [0, 0, 1]T and H is already of the form Hres and

the distortion can be written as ||HHres
i − I||. We compute

importance weights wi for the images (explained later) and

minimize the weighted sum of distortions. Mathematically,

Hopt = argmin
H

n
∑

i=0

wi||HHres
i − I||2 (1)

However, it is a non linear optimization problem because

of the dehomogenization operation, i.e., the bottom right

entry of the product HHres
i needs to be 1. However, alge-

braically, the above objective is similar to

Hopt = argmin
H

n
∑

i=0

wi||H
−1 −Hres

i ||2 (2)

as they both encourage the productHHres
i to be close to I .

SinceHres
i are known and can be normalized by setting the

bottom right element to 1, it yields a simple least squares

objective and leads to a simple closed form solution

H−1
opt(a, b) =

∑n

i=1 wiH
res
i (a, b)

∑n

i=1 wi

(3)

Hopt can be computed by inverting the solution obtained

from Eq. (3). In practice we avoid the explicit inversion

and directly compute the products HoptHi from H−1
opt by

solving the linear equation H−1
optX = Hi which is more

numerically stable. This computation is fast enough to be

done in real-time on standard PCs. Note that Hopt does not

induce any translation, i.e., the origin or the center of the

mosaic remains stationary. However, it had moved exactly

by(δx, δy) before the application ofHopt due to application

ofHtrans(δx, δy). This is the behavior that the user expects
to see on dragging by (δx, δy), i.e., the center of the mosaic

moves by (δx, δy).
We now describe how we compute importance weights

wi for different images that are used in the optimization

step. Distortion of images near the center of the viewport

would be more noticeable. Hence we weight such images

higher. Let (xi0, yi0) be the location of the center of Ii un-

der transformation Hi. In all of our computations, we nor-

malize the image dimensions to be [−0.5, 0.5]×[−0.5, 0.5].
Our viewport is [−1, 1]×[−1, 1]with the origin at the center
of the viewport. Then we define the weight of Ii as

wi =

{

0 if max(|xi0|, |yi0|) > 0.5

0.5−max(|xi0|, |yi0|) otherwise

(4)

Such a definition of weights ensures that they change

smoothly as the user moves around ensuring that the op-

timal projection also changes smoothly. If the user zooms

in very far, it might happen that all weights are zero. In

that case, we set the weight of the image that is closest to

the origin to be 1. We refer to the image with the highest

weight as the central image. Any image that does not be-

long to the neighbor set S of the central image is set to have

a weight zero. Finally the weights are normalized such that
∑

i wi = 1.
Application of Hopt changes the transforms of the im-

ages and consequentially the weights. Ideally one should

solve this in an iterative fashion until convergence. How-

ever, such an approach is too slow for interactive real time

rendering. Hence, we instead amortize the iterations over

render cycles, i.e., at each render cycle we compute the

weights and solve for an optimalHopt.

Zooming: Dragging interaction works by allowing the

user to control the translation of the center of the mosaic

while the optimization is invariant to it. Hence, zoom inter-

action should work similarly – allow the user to zoom in or

zoom out with optimization being invariant to uniform scal-

ing. However, the objective in Eq. (1) penalizes uniform

scaling of images.

To make the objective invariant to scaling, we first com-

pute the scale factor of each image. For that we need to

associate a scaling factor scale(H) with a general homog-

raphyH . Consider a unit square centered at the origin trans-

formed by the homography. We define the scale factor as the

square root of the area of the transformed square. Since we

normalize the image dimensions to [−0.5, 0.5]×[−0.5, 0.5],
this measures the change in area of the image under that

transformation. For our image collection, for every pair of

stitchable images (Ii, Ij), we find this pairwise scaling fac-
tor sij = scale(Hij) where Hij is the homography that

warps Ij to Ii. We then find the scale factor si for each im-

age relative to I1 in a way similar to how we find the expo-

sure gain factors. More precisely, we set s1 = 1 and solve

for s2,s3,..., sn given the pairwise constraints si
sj

= sij . It

reduces to a least squares system after applying log.

Now, when solving for the best planar projection in our

objective, we normalize for the scale factor, i.e., we want

the productHHres
i to be close to

si 0 0
0 si 0
0 0 1

 (5)

instead of identity. Correspondingly, we change the ob-

jective to Hopt = argminH
∑n

i=0 wi||H
−1 −Hres

i S−1
i ||2

where Si is the matrix defined in Eq. (5) whose inverse is

trivial to compute since it is a diagonal matrix. To allow

the user to zoom in or zoom out of the mosaic, the viewer

maintains a current scale factor sf which is updated based

on user input and we use

Si =

sisf 0 0
0 sisf 0
0 0 1

 (6)

in our objective.

To support images at different scales, we also change our

weighing function – give more weight to the image that is at

the right resolution for the current scale factor. Hence, we

now define the weight as w′
i = wi

1+|log(sisf)|
, i.e., amplify

the weights of the images for which sisf is close to 1.

4.2. Cross Fades between Seams

The system uses the seams corresponding to the current

central image (image with the maximumweight), i.e., if the

current central image is Ii it uses the seams corresponding

to Si. As the central image changes, the system smoothly

transition between different graph cut seams. The renderer

works by keeping an alpha mask Ai [20] corresponding to

each image Ii which are updated continuously. We initialize

eachAi to be zero everywhere. Let Im be the current central

image. Let Mmj denote the mask corresponding to image

Ij ∈ Sm. While the original mask computed using graph

cuts is binary, it can have real values due to blending across

seams (Section 4.4). Then at each render cycle, we update

the current masks as

Ai(x, y) =

Ai(x, y)− β ifMmj(x, y) < Ai(x, y)− β

Ai(x, y) + β ifMmj(x, y) > Ai(x, y) + β

Mmj(x, y) otherwise

(7)

Mmj’s are loaded as textures and these updates are done in

hardware using a custom shader. The parameter β controls

the speed of crossfade.

4.3. Dynamic Global Exposure Compensation

We solve for scalar gain factors for each color channel

independently. E.g., for the red channel, we use

r0 = argmin
r

∑

i

wi(log
r

ri
)2 (8)

where ri is the gain factor corresponding to Ii computed in

Section 3.4, and similarly for the green and blue channels.

The resulting exposure gain that is applied to Ii is
r0
ri
. From

the objective, one can see that the gain corresponding to

images with higher weights be closer to 1. The weights are
the same as those used in Eq. (3). The above objective

permits a closed form solution of the form r0 =
∏

i r
wi

i .

Further, we do not apply the compensation immediately and

add a delay in a way similar to Kopf et al. [14] to simulate

the behavior of human eye which takes some time to adjust

to the change in lighting.

4.4. Realtime Multi Band Blending

We also implement real time multi band blending [7]

across seams to remove any remaining artifacts. We pre-

compute the Laplacian pyramid corresponding to each of

the images and store different levels of the pyramid as in-

dividual textures. We add an offset of 255 to the difference

images to ensure that all values are positive and then com-

press them to range [0, 1] before loading them as textures.

As higher levels of pyramid are stored at lower resolution,

memory requirements are bounded.

At render time, for each Ii we build a Gaussian pyramid

of the corresponding alpha mask Ai. This is done on the

GPU using OpenGL’s texture downsampling. Final render-

ing is then produced by accumulating the renderings cor-

responding to each level of the pyramid in accumulation

(a) Camera path (b) Captured photos

Figure 6: A collection of 43 photos taken on a staircase

capturing paintings on the wall.

Figure 7: Dynamic mosaic corresponding to the staircase

collection. The top row shows a sequence of zoom outs

corresponding to the part shown on the left. The bottom row

shows zoomouts for another part. User can smoothly move

between different parts simply by dragging the mouse.

buffer after adding back proper offsets. OpenGL’s texture

upsampling is used to upscale each rendering to the full

resolution. Further, for each level, we also apply exposure

compensation factors (Sec. 4.3) while adjusting for offset

and compression.

Using too many pyramid levels may lead to quantization

artifacts because of the limited resolution of accumulation

buffer. Hence we use a two level scheme with a downsam-

pling factor of 7 similar to Brown et al. [5]. Further, multi

band blending is ineffective if the seams are very close to

the image boundary as the blending alpha is truncated by

image edges. Hence, we encourage seams that are away

from the boundaries by penalizing pixels near the bound-

ary in graph cuts and divide each pixel value in the final

composite by the composited alpha value in case there is

truncation and alpha value does not sum to 1.

5. Results

We show some results here. Please view the video [25]

as it is difficult to capture the dynamics of the system in still

figures. The renderer works at interactive rates on standard

PCs.

Figure 6 shows a collection of 43 photos. Traditional im-

age stitching software is unable to stitch them into a single

mosaic. However, in our system the user can browse the

scene by using simple drag and zoom interaction (Fig. 7).

The system can also handle photos at different scales.

The user is able to smoothly zoom in with the system

choosing the images at the right resolution. The weighing

function takes into account scale of the image and hence

(a) (b) (c)

Figure 8: (a) A collection of 31 photos of a street side. (b)

In presence of parallax, stitching artifacts are unavoidable at

image edges. (c) However, seam selection is able to mask

such artifacts.

(a) (b)

(c)

Figure 9: A sequence of zoomouts from our viewer.

(a) (b)

Figure 10: Two renderings corresponding to the left end of

Fig. 9 bottom. As the user drags to this part of the mo-

saic, the system smoothly updates the rotation to show as

horizontal as possible view.

gives higher weight to images which are at the current scale

of the viewer. Please view the video [25] to see the re-

sults. The system is also capable of handling walking for-

ward/backwardmotion provided the adjacent images can be

aligned via a homography.

Figure 8a shows photos of a street side shot using a hand

held camera. Because of significant parallax between im-

ages, we solve for a similarity transform between images

instead of a full homography to reduce the degrees of free-

dom. Misalignments due to restricted matching model and

parallax are minimal and are compensated by seam selec-

tion and blending (Fig. 8c). Fig. 9 shows the collection

being browsed in our viewer. Due to extreme parallax in

the scene, the stitching artifacts are more evident here, e.g.,

the vehicles on the road. Unlike the system of Agarwala

et al. [1], the camera motion is not restricted to translation;

some of the taller buildings have been captured by tilting

the camera up and down. Further, dynamic seams empha-

size parallax similar to the Street slide system of Kopf et al.

[13].

Stitching such long facades can often lead to curved mo-

(a) (b) (c)

Figure 11: (a) 6 out of 18 input photos. (b) A rendering

where the interior is well exposed while the window on the

right is saturated. (c) As the windows come into view, a

shorter exposure is selected; view outside the window is

visible.

(a) (b) (c)

Figure 12: (a) 2 out of 18 photos from a rotating camera;

the person moves between shots. (b),(c) Renderings from

the viewer which stitches the images into a larger field of

view. Dynamic seams recreate the motion without cutting

through the person as the user pans from right to left.

saics if the camera is not horizontal or not looking head on

at the facade as can be seen on the left of Fig. 9 bottom.

However, because we penalize in-plane rotation in the ob-

jective in Eq. (1), the viewer smoothly rotates the mosaic as

the user navigates making the current view as horizontal as

possible (Fig. 10).

Figure 11 shows a rotational mosaic that adjusts dynam-

ically to the varying brightness in the scene.

5.1. Dynamic Motion Mosaics

Dynamic seams allow us to recreate the motion in the

scene (Fig. 12). While there exists specialized approaches

[3, 22] for rotational mosaics, our framework easily allows

for recreating motion in the scene for more general cam-

era motion. Our formulation automatically chooses seams

to minimize artifacts, we allow the user to add additional

constraints to achieve more targeted effects like the strobo-

scopic effect shown in Fig. 13c where the dynamic mosaic

shows the history of the jump up to the current time with

time increasing as the user pans from left to right. This mo-

saic is created from a panning video where the location of

the jumper was marked in each frame. This can be achieved

by adding a constraint in local graph cuts. Assuming that

the images are indexed by the frame number, then while

computing the seams corresponding to Si, we add a con-

straint to choose pixels corresponding to the jumper from

Ij if j ≤ i and not choose such pixels if j > i. The method

can also be seen as video summarization analogous to [8].

(a) Frames from a panning video (b) Masked location of jumper in

frames

(c) Dynamic mosaic; jumper moves forward as the user pans from left to

right.

Figure 13: Dynamic motion mosaic from a panning video.

6. Discussion

We proposed an approach for creating dynamic mosaics

of scenes from photos. They provide intuitive navigation

while allowing for more general camera motion and being

dynamic in nature. Using a more versatile exposure com-

pensation model and determining pairwise homographies in

a globally optimal way that allows loop closing are some of

the directions we will like to explore. Another desirable

feature is to be able to show the summary of the entire col-

lection if the user is zoomed out all the way. Image col-

lages [26, 18] can layout a collection on a planar surface

at the expense of stitching artifacts. Peleg et al. [19] re-

lax perspective-correctness and find adaptive manifolds for

stitching mosaics from video sequences. However, it can

result in arbitrary bending of scene lines and does not work

for photos. Ultimately, the approach should allow intuitive

capture and navigation of arbitrary scenes, e.g., a house

with multiple rooms, where dynamic mosaics for individual

rooms are connected to each other in an intuitive fashion.

Acknowledgment: This work was supported in part

by National Science Foundation grants IIS-0811878, IIS-

0963657, the University of Washington Animation Re-

search Labs, Intel, Microsoft, and Google.

References

[1] A. Agarwala, M. Agrawala, M. Cohen, D. Salesin, and

R. Szeliski. Photographing long scenes with multi-viewpoint

panoramas. In Proc. SIGGRAPH, pages 853–861, 2006.

[2] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker,

A. Colburn, B. Curless, D. Salesin, and M. Cohen. Interac-

tive digital photomontage. In Proc. SIGGRAPH, pages 294–

302, 2004.

[3] A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen,

B. Curless, D. Salesin, and R. Szeliski. Panoramic video

textures. ACM Trans. Graph., 24(3):821–827, 2005.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. PAMI, 23(11):1222 –1239,

nov 2001.

[5] M. Brown and D. Lowe. Recognising panoramas. In Proc.

ICCV, pages 1218 –1225, 2003.

[6] M. Brown and D. G. Lowe. Automatic panoramic image

stitching using invariant features. IJCV, 74:59–73, 2007.

[7] P. J. Burt and E. H. Adelson. A multiresolution spline with

application to image mosaics. ACM Trans. on Graphics,

2:217–236, October 1983.

[8] Y. Caspi, A. Axelrod, Y. Matsushita, and A. Gamliel. Dy-

namic stills and clip trailers. Vis. Comput., 22(9):642–652,

2006.

[9] J. Davis. Mosaics of scenes with moving objects. In Proc.

CVPR, pages 354–1361, 1998.

[10] G. Finlayson, M. Drew, and B. Funt. Diagonal transforms

suffice for color constancy. In Proc. ICCV, pages 164–171,

1993.

[11] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The

lumigraph. In Proc. SIGGRAPH, pages 43–54, 1996.

[12] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press, second

edition, 2004.

[13] J. Kopf, B. Chen, R. Szeliski, and M. Cohen. Street slide:

browsing street level imagery. ACM Trans. Graph., 29:96:1–

96:8, July 2010.

[14] J. Kopf, M. Uyttendaele, O. Deussen, and M. F. Cohen. Cap-

turing and viewing gigapixel images. ACM Trans. on Graph-

ics, 26, 2007.

[15] M. Levoy and P. Hanrahan. Light field rendering. Proc. SIG-

GRAPH, pages 31–42, 1996.

[16] W. Y. Lin, S. Liu, Y. Matsushita, T. T. Ng, and L. F. Cheong.

Smoothly varying affine stitching. In Proc. CVPR, pages

345–352, 2011.

[17] L. McMillan and G. Bishop. Plenoptic modeling: an image-

based rendering system. In Proc. SIGGRAPH, pages 39–46,

1995.

[18] Y. Nomura, L. Zhang, and S. Nayar. Scene Collages and

Flexible Camera Arrays. In Proc. of Euro. Symp. on Render-

ing, Jun 2007.

[19] S. Peleg, B. Rousso, A. Rav-Acha, and A. Zomet. Mosaicing

on adaptive manifolds. PAMI, 22:1144–1154, 2000.

[20] T. Porter and T. Duff. Compositing digital images. Proc.

SIGGRAPH, 18(3):253–259, 1984.

[21] P. Rademacher and G. Bishop. Multiple-center-of-projection

images. Proc. SIGGRAPH, pages 199–206, 1998.

[22] A. Rav-Acha, Y. Pritch, D. Lischinski, and S. Peleg. Dy-

namosaics: video mosaics with non-chronological time. In

Proc. CVPR, 2005.

[23] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: ex-

ploring photo collections in 3D. Proc. SIGGRAPH, pages

835–846, 2006.

[24] M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghost-

ing and exposure artifacts in image mosaics. In Proc. CVPR,

pages 509–516, 2001.

[25] Video Results. http://youtu.be/qfEiARm9Dmg.

[26] L. Zelnik-Manor and P. Perona. Automating joiners.

In Symp. on Non-Photorealistic Animation and Rendering

(NPAR), pages 121–131, 2007.

[27] L. Zelnik-Manor, G. Peters, and P. Perona. Squaring the cir-

cle in panoramas. In Proc. ICCV, pages 1292 –1299 Vol. 2,

2005.

[28] D. Zorin and A. H. Barr. Correction of geometric perceptual

distortions in pictures. In Proc. SIGGRAPH, pages 257–264,

1995.

