
Detecting LSB Steganography in Images

Ankit Gupta, Rahul Garg

Abstract

In this paper, we present techniques to detect Least Significant Bit (LSB) steganog-
raphy for images. Here, images can be hidden inside lower bits of the pixels of the
cover image. We use image statistics to detect two cases - when hidden image is
stored as one big chunk (Simple Mode) or spread out(Shuffle Mode). The results are
presented on a synthetically generated database of around 350 steganographic im-
ages. We also analyze the detection rate of a popular steganography tool, StegDetect
against a hiding tool, JPHide. Based on this analysis, we present intuitions about
what types of images can act as good cover images for this tool.

1 Introduction

Image steganography is the science of hiding data inside cover images for security. Images
have a lot of visual redundancy in the sense that our eyes do not usually care about subtle
changes in color in an image region. One can use this redundancy to hide text, audio
or even image data inside cover images without making significant changes to the visual
perception. Image steganography is becoming popular on the internet these days since a
steganographic image, which just looks like any other image, attracts a lot less attention
than an encrypted text and a secure channel.

In this paper, we look at a special case of image steganography - hiding images inside
images. From now on, we will use the word hidden images for the former, cover images for
the latter, and stegified image for the cover image containing a hidden image. There are
already a bunch of techniques available for this purpose and Least Significant Bit (LSB)
Steganography is one of them. LSB steganography is a very simple algorithm where higher
bits of the color channels of hidden images are stored in lower few bits of the color channels
in the cover image. We examine two variants of this approach - storing the hidden image as
one big chunk (Simple Mode) or spreading out the pixels while hiding (Shuffle Mode). We
found no downloadable tools on the internet which can detect simple LSB steganography
and recover the hidden images. Hence we build the tool and present its detection and
recovery results on a synthetically generated database of stegified images.

We also wanted to investigate if there are specific properties of cover images for which
steganography is hard to detect. We do the cover image analysis using existing image
hiding and recovery tools, JPHide and StegDetect respectively, which work for JPEG
images.

The remainder of this paper is organized as follows. Section 2 talks about some existing
techniques for image steganography. In Section 3, we talk about the generation of stegano-
graphic image database. In Section 4, we explain our algorithm for detecting Simple Mode

1



steganography. In Section 5, we explain how we extend our algorithm to detect Shuffle
Mode steganography. We present the quantitative results and analysis in Section 6 and
conclude the paper in Section 7 with a summary and discussion about future goals.

2 Related Work

Images are a popular cover medium for steganography given the high degree of redundancy
present in digital representation of an image (despite compression). [3] and [9] provide an
overview of concepts and practices related to image steganography. The steganographic
algorithms can be classified in a couple of ways:

• Spatial vs Transform: The algorithm may exploit the redundancy present in the
spatial domain or the frequency domain.

• Model based vs ad-hoc: The algorithm may model the statistical properties of the
medium trying to preserve them or embedding can be done in an ad-hoc manner.

The LSB steganography technique is the most common form of technique in spatial domain.
This technique makes use of the fact that the least significant bits in an image could be
thought of as random noise and changes to them would not have any effect on the image.
In Transform domain, embedding is done by altering DCT (Discrete Cosine Transform)
coefficients. One of the constraints in transform domain is that many of the coefficients
are zero and altering them changes the compression rate of the image. That is why the
information carrying capacity of an image is much lesser in transform domain than in
spatial domain. Two popular transform domain steganography algorithm are F5 [13] and
OutGuess [7]. F5 has two important features. First, it permutes the DCT coefficients
before embedding aiming to distribute the induced changes uniformly over the image.
Second, it employs matrix embedding to minimize the amount of change made to DCT
coefficients. Outguess is also a two step algorithm. It first identifies redundant DCT
coefficients which have minimal effect on the cover image, and then depending on the
information obtained in initial steps, chooses bits in which it would embed the message.
Both F5 and OutGuess have been successfully attacked. Two other tools available on the
internet for LSB steganography in transform domain are JSteg and JPHide. While JSteg
modifies all the DCT coefficients, JPHide modifies some predecided set of coefficients and
hence is more difficult to detect. An overview of these techniques can be found in [8].

More sophisticated techniques try to model image statistics and try to minimize changes
to them. For example, the method in [10], the transformed image coefficients are broken
down into two parts and replaces the perceptually insignificant component with the coded
message signal.

There is some work on exploring what is a good cover medium. For example, in [5], good
cover media are selected given some knowledge about the steganalysis tool.

Steganalysis is the science of detecting steganography. Most methods only aim to detect
whether a medium contains hidden data and do not seek to recover the hidden message
as well as that is a very hard problem in a general setting. Steganalysis methods can be
classified into two categories

2



• Specific to a particular steganographic algorithm.

• Universal steganalysis

Obviously, success rate with former kind of methods is much higher. Provos et al [8]
present a tool StegDetect which is targeted at JSteg, JPHide and OutGuess. They show
good detection results and high processing speeds and further use this tool to crawl the
internet and find steganographic images.

Most steganalysis techniques in the second category look at how the embedding modifies
the statistics of the medium but many of them do not take into account that medium are
images which have certain characteristic statistics [2]. However, [1] does try to exploit
natural image statistics to some extent. None of the methods make any assumption about
the kind of data hidden inside the medium. Universal steganalysis techniques essentially
design a classifier based on a training set of cover-objects and stego-objects obtained from
a variety of embedding algorithms. Note that none of these techniques allow for recovering
the hidden images automatically. In this paper, we are aiming to develop tools which can
automatically recover hidden images in LSB steganography scheme.

Kharrazi et al [6] do a comprehensive study of available stegalyzers and study their per-
formance with varying image parameters like size, JPEG compression factors, compression
artifacts etc. We are more interested in correlating some image statistics of cover or hidden
images with the ability to detect steganography.

3 Database Creation

We have selected 19 images that we use as both cover images and hidden images. These
are shown in Appendix 8.1.

3.1 Generating Steganographic images

We could not find any open source tool that could be used for hiding images inside other
images using LSB steganography. We have written an application that takes as input a
cover image, an image to be hidden (smaller in size than the cover image) and the number
of lower order bits to be used for hiding data. The depth of the image to be hidden is
reduced depending on the number of bits to be used for hiding data. For example, if we
specify that 3 lower order bits are to be used, the depth of the image to be hidden is
reduced to 3 bits per pixel per channel. In strict sense, LSB steganography means that
only the last bit is to be altered, however we allow multiple lower bits to change (upto 4).
To generate images to be hidden we reduce the height and width by a factor of 4. Since
the number of lower order bits used vary from 1 to 4, our data injection rate (percentage
of hidden data in the cover media) varies between 0.75% to 3%.

Our application supports two modes of hiding the images:

• Simple Mode: A pixel is randomly selected in the cover image and the image to be
hidden is embedded in the lower bits of the cover image with the upper left corner at

3



the chosen pixel. For recovering the hidden image, only the location of the selected
corner, number of bits used to hide the image and dimensions of the original image
are required which can be communicated as a secret key for decryption. An example
of hiding images using this mode is shown in figure 1

(a) Cover Image (b) Hidden Image (c) Stegified Image (d) Lower bits of Stegi-
fied Image

Figure 1: (a) is the cover image while (b) is an image to be hidden. (c) shows the
image which contains (b) embedded within. Note that it is not perceptually different
from (a). However, (d) shows the lower 3 bits of (c), which clearly reveals the hidden
image

• Shuffle Mode: In this mode, given a cover image of size M × N , and an image
of size m × n to be hidden, we randomly select m out of M rows and n out of N

columns of the cover image and use these selected rows and columns (m × n pixels
in total) to embed the image. the decryption key in this case would consist of the
indices of selected rows and columns and number of bits chosen to hide the image.
An example of hiding an image using this mode is shown in figure 2.

(a) Cover Image (b) Hidden Image (c) Stegified Image (d) Lower bits of Stegi-
fied Image

Figure 2: (a) is the cover image while (b) is an image to be hidden. (c) shows the
image which contains (b) embedded within. Note that it is not perceptually different
from (a). However, (d) shows the lower 4 bits of (c). It is still hard to detect
the hidden image but one can see checkered pattern which corresponds to rows and
columns used to hide the image

4 Detection of Simple Mode Steganography

In contrast to existing steganalysis tools, we not only want to detect the stegified images,
but we want to extract the hidden content as well. This may be compared to recovering the
original message from an encrypted piece of text. The high level idea of such a process is to
have a brute force attack on the decryption key and check if some decryption key yields a
message that can be verified using a dictionary of words. However, such an approach may
not be directly applied to the domain of images since there does not exist a dictionary of

4



valid images. However, we claim that we can build such a virtual dictionary and distinguish
between a real world image and arbitrary noise using some image statistics that distinguish
between the two.

There has been a lot of work on identifying key image statistics that distinguish natural
images. Humans are exceptionally well trained to identify these characteristics. A well
known property of natural images is that when derivative like filters are applied, the
distribution of the filter output is a heavy tailed Gaussian, i.e. a distribution that peaks
at 0 but falls off rapidly but with significantly heavier tails than a Gaussian distribution.
Such priors on image statistics have been successfully used to do various image processing
operations like denoising [12] , deblurring [4], super-resolution [11], etc.

In our work, rather than modeling full image statistics, we employ a very simple model
where we exploit the fact that output of a gradient filter peaks at 0. This constraint can
be stated in a more naive fashion by saying that adjacent pixels tend to be of the same
color.

In order to decrypt the images hidden using Simple Mode, we are looking to find a de-
cryption key that consists of the coordinates of the top left corner of the hidden image
(X, Y ), dimensions of the hidden image (W, H), and the number of bits chosen to hide
the image i.e k. Hence, we are trying to figure out the 5-tuple (X, Y, W, H, k) given the
stegified image. Assuming that k ∈ {1, 2, 3, 4}, there are only O(n2) possible values of the
tuple where n is the number of pixels in the image, making a brute force search feasible.
All we now need is a scoring function, that measures the likelihood of the decrypted image
being a natural image based on the statistics of the decrypted image.

As stated before, we require adjacent pixels in the decrypted image to be similar. Before
we give a description of our objective function, let us define some notation. I represents
the input image which we are checking for steganography. I(x, y) is the pixel value in I at
location (x, y). Im(x, y) denotes the lower m bits of the pixel value while Im(x, y) denotes
the upper m bits of the pixel value. We define a binary function F (x, y, k) over I as follows:

F (x, y, k) = (Ik(x, y) == Ik(x − 1, y)) ∧ (Ik(x, y) == Ik(x, y − 1))

∧(I8−k(x, y) 6= I8−k(x − 1, y)) ∧ (I8−k(x, y) 6= I8−k(x, y − 1))

where we assume that pixel value is a 8 bit value. Observe that F (x, y, k) evaluates to 1
iff the lower k bits of pixel at location (x, y) match the lower k bits of the pixel to the
left and above while the upper (8 − k) bits are different. Intuitively, such pixels are good
candidates for containing hidden data. More discussion over the choice of this function is
in the Appendix 8.2. In practice, we are dealing with 3 channel images. In such a case,
we compute the function value for the three channels independently and the outputs are
anded to yield the final F (x, y, k) value. However, we’ll talk only about single channel
images to keep the description simple. A sample F (x, y, k) output on a stegified image is
shown in figure 3.

Now we seek to build a scoring function that takes in a tuple T = (X, Y, W, H, k), and
evaluates the score S(T ) based on the decrypted image. As mentioned before, number of
tuples would be O(n2) and hence our algorithm will have a complexity of O(n2) assuming
O(1) complexity for computing S(T ). We can speed things up by processing the two
dimensions independently i.e for a given k we search independently over (X, W ) and (Y, H).

5



(a) Cover Image (b) Hidden Image (c) F (x, y, 1) (d) F (x, y, 3)

Figure 3: (a) is the cover image while (b) is an image to be hidden. The image is hidden
in k lower bits and we vary k from 1 to 4. (c) and (d) show F (x, y, k) values for k = 1
and k = 3 respectively. Even though it looks like that function is non zero only inside
the region considering the hidden image, there is considerable clutter outside the region as
well, especially for the case of k = 1

Number of such tuples is only O(n) along each dimension. To enable such a searching, we
derive two more functions from F (x, y, k):

Fx(x, k) = ΣyF (x, y, k)

and
Fy(y, k) = ΣxF (x, y, k)

Fx and Fy are simply 1-D histograms of F (x, y, k) computed along horizontal and vertical
directions respectively. We make both these histograms zero mean by subtracting the mean
from each bin. Now a scoring function Sx(T

′) for evaluating a tuple T ′ = (X, W ) may be
defined as:

Sx(T
′) = Σx∈[X,X+W ]Fx(x, k)

and a similar scoring function Sy(T
′) may also be defined to score the tuples along vertical

direction.

Hence for a given value of k, we compute two tuples T ′

1 = argmaxSx(T
′) and T ′

2 =
argmaxSy(T

′). The overall tuple is then simply T = (T ′

1, T
′

2, k) with S(T ) = Sx(T
′

1) +
Sy(T

′

2). We can iterate over all values of k to select the value which gives the maximal score.
However, there is one final observation to be made. It is easy to see that if F (x, y, k) = 1,
then F (x, y, k′) = 1 ∀k′ < k. Hence, the scoring function is biased towards lower values

of k. We fix this by changing S(T ) = 2k ∗ (Sx(T
′

1) + Sy(T
′

2)). We put a threshold on S(T )
W∗H

to decide whether an image contains a hidden image or not.

To summarize, our detection algorithm is as follows:

DETECT(Threshold)

Best Score = 0;

Best Tuple = NULL;

FOR k = 1,2,3,4

EVALUATE F(x,y,k)

EVALUATE F_x(x,k) and F_y(y,k)

FIND OPTIMAL (X,W)

FIND OPTIMAL (Y,H)

6



EVALUATE Score of (X,Y,H,W,k) = 2^k * (S_x(X,W) + S_y(Y,H))

IF SCORE > Best Score

Best Score = SCORE

Best Tuple = (X,Y,H,W,k)

if Best Score > Threshold

return image decrypted using Best Tuple

else

"Clean Image"

Finding optimal (X, W ) (or (Y, H)) can take O(W ′2) (or (O(H ′2)) time where W ′ and H ′

are width and height of the original image respectively. However, it is possible to reduce
the complexity to linear time using dynamic programming. Evaluating F (x, y, k) is the
most expensive step in this computation giving an overall time complexity of O(n) where
n is the number of pixels.

It’s easy to see from the construction of the algorithm that it is likely to perform poorly
in cases when the hidden image has a high frequency content while the cover image is a
low frequency one. It becomes difficult to identify candidate pixels from the definition of
F (x, y, k) in such a case. More discussion on this appears in the Appendix 8.2.

5 Shuffle Mode Steganography Detection

In case of shuffle mode, the decryption key T consists of a list of rows Tr and a list of
columns Tc. Again, we can check for goodness of decrypted image by evaluating a metric
similar to F (x, y, k). However, there are two key issues that need to be addressed:

• The search space of tuples in this case is large enough to make the brute force search
infeasible.

• In the case of Simple Mode Detection, we could precompute F (x, y, k) on the input
image and then use this precomputed function to evaluate tuples. However, this
is not possible in this case since the value of F (x, y, k) depends upon the tuple in
consideration. This is because the pixel to the left and above current pixel is defined
by the set of rows and columns in the tuple itself.

To give an intuition of our approach, assume that we know what are the columns con-
taining hidden pixels and we are supposed to find the hidden rows i.e the rows containing
hidden pixels. Since we know the hidden columns, given a hidden pixel, we know what it’s
predecessor is within the same row. Let the known columns be indexed using a index set
C. Let us define a score S(y, k) for each row (indexed by y) as:

S(y, k) = Σc∈CFs(c, y, k)

where Fs(c, y, k) is defined as:

Fs(c, y, k) = (Ik(C[c], y) == Ik(C[c − 1], y)) ∧ (I8−k(C[c], y) 6= I8−k(C[c − 1], y))

7



It is almost the same as F (x, y, k) but we are only using pixel to the left of the current
pixel and not the pixel above. The rows with high S(y, k) are likely to contain hidden
pixels. In our implementation we choose all rows with S(y, k) > µ + 0.1σ where the µ and
σ are the mean and standard deviation of S(y, k) calculated over all rows.

We can also create a similar approach to find hidden columns given the rows.

So given an initial set of rows (or columns), one can iteratively alternate between finding
columns and rows, and hope that the algorithm converges to the correct set of rows and
columns. We still have to devise a way to initialize the algorithm.

One way to initialize is to try multiple random initializations and see when does the algo-
rithm converge to a subset of rows and columns with a good score for rows and columns.
However, this might be too expensive and we choose a simpler approach in our imple-
mentation. More concretely, we consider the F (x, y, k) image as calculated in the simple
mode steganography detection, calculate row (column) scores using that function instead
of Fs(c, y, k), and initialize a set of rows (columns) using that score. Observe, that for
it to work reasonably well, there should a few consecutive hidden columns (rows) which
seems like a very strong assumption, especially when the hidden image is small. Hence,
better initialization methods are needed. However, Figure 4 shows an example run of the
algorithm and shows its capability to converge to a good solution starting from a very bad
initialization.

Here also, we have the same problem that the score is biased towards choosing a lower k.
However, in this case, we found out that multiplying the score by 2k biases it towards higher
bits. This could be because search space is considerably larger than the case of Simple
Mode, and the method is able to lock on to some candidate solution with reasonably good
score in many cases. Hence, in this case, we simply fix it by choosing the highest possible
k for which we obtain a score greater than the supplied threshold. This should also work
in the case of Simple Mode, but we feel that it is more elegant to have that metric in the
scoring function itself if possible.

6 Experiments and results

As described in Section 3, we have a set of 361 stegified images which has been created
by using 19 cover images and 19 hidden images. We run all our steganography detection
experiments on a machine with 3.8GHz processor and 4GB RAM.

6.1 Detecting LSB steganography

6.1.1 Simple mode detection

We run the Simple mode LSB steganography detection algorithm on the stegified set and
the set of 19 cover images. We get a 100% detection rate with no false positives or negatives.
The algorithm takes around 5 seconds to run on a 6MP image. The algorithm also requires
a thresholding parameter which we empirically choose as 0.2. Figure 5 shows some example
of stegified images, recovered hidden images from them and ground truth hidden images.
We see the color quantization effects in the recovered images because the process of LSB

8



(a) (b)

(c)

(d) (e)

(f) (g)

Figure 4: (a) is the hidden image while (b) is the stegified image containing the hidden
image in the lower 3 bits in shuffle mode (c) shows the initial set of rows selected by the
algorithm. (d) shows the selected columns given the rows selected in (c) We start to see
some structure appear especially at the very top of the image but it is still dominated
by a lot of spurious rows and columns. (e), (f) and (g) show subsequent iterations. It
shows that the algorithm tends to converge very fast given only a few good rows in the
initialization

steganography hides the higher bits of pixels from hidden image in lower bits of pixels from
cover image. These results indicate that image statistics enforce a very strong prior and
may be useful beyond this artificial case as well.

6.1.2 Shuffle mode detection

We run the Shuffle mode LSB steganography detection algorithm on the stegified set and
the set of 19 cover images. We get a 80.57% true positive rate and 0% false positive rate.

9



Least 2 significant bits used

Least 4 significant bits used

Least 3 significant bits used

Figure 5: The left most column shows some stegified images. The middle column shows
the recovered hidden images from our algorithm. The right most column shows the corre-
sponding ground truth hidden images. Color quantization seen in the recovered images is
an artifact of the hiding algorithm. The recovered quality increases as the number of bits
used increases. The stegified images have been made smaller in size for better fit on page.

(a) Stegified image (b) Ground truth hidden image (c) Recovered hidden image us-
ing our algorithm

Figure 6: Failure case in shuffle mode LSB steganography detection

The algorithm takes around 15 seconds to run on a 6MP image. The algorithm also requires
a thresholding parameter which we empirically choose as 0.7. The recovered images and
quantization artifacts are very similar to the Simple mode and hence we are not showing
the recovered images here. Figure 6 shows a failure case for Shuffle mode detection which

10



happens because of bad initialization as mentioned in Section 5.

6.2 Analyzing cover images for StegDetect - an existing steganog-

raphy detection tool

We want to analyze if certain images are inherently good to act as cover images. This
means that the detection tool is not able to detect steganography inside a cover image
irrespective of the hidden image. We decided use an already available steganography
detection tool StegDetect which is targeted at detecting a group of algorithms and JPHide
is one of these. We first generate the stegified image database again by hiding the 19
images in one another to get 361 images. Again the hidden image versions are reduced-size
versions of original (factor of 4 in each height and width). JPHide can only hide data upto
a limit and hence we were not able to generate stegified images for all the combinations.
Because if this, we have 285 stegified images in our test database instead of expected 361
images. Besides these, we also have the original 19 cover images which have nothing hidden
inside them. We then run StegDetect on this combined test set to detect steganography.
StegDetect requires a threshold parameter which was empirically chosen to be 2.0 for these
experiments.

(a) (b) (c)

Figure 7: Cover images which have very low probability of being detected by StegDetect
irrespective of the hidden image

From the detection results on the stegified images, we can compute detection probabilities
conditioned on cover images or hidden images. Barring three cover images, all cover images
are detected irrespective of the hidden image. Figure 7 shows these images. We hypothesize
that images with large homogeneous regions and small clusters of high frequencies are good
for cover images though more rigorous experimentation is required. Note again that this
condition for good cover images is only applicable to the StegDetect detection tool when
images are hidden using JPHide tool. We tried to quantify this observation by finding the
correlation of this probability with the fraction of high frequency pixels in the image but
it turns out that this image measure does not define the intuitive idea well. We have not
been able to come up with a good quantitative image measure for this correlation.

Next we study the effect of varying thresholding parameter for the StegDetect tool. The
tool manual says that as this threshold increases, the tool becomes more sensitive. Figure 8
shows the plotted ROC curve for different threshold values - 1.0, 2.0, 3.0 an 4.0. An ROC
curve plots the true positive rate vs the false positive rate. Good performance is marked
by a high true positive rate and low false positive rate. We observe that this performance
does not depend much on the threshold and the value of 2 (second point from left) is good
enough.

11



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Tr
u

e
 p

o
si

�
ve

 r
a

te

False posi�ve rate

Figure 8: ROC Curve for steganography detection using the StegDetect tool. It is observed
that variation in threshold value does not affect performance much.

7 Conclusion

In this paper, we presented an overview of Least Significant Bit image steganography
techniques. Due to lack of available databases and tools, we build our own tools and
perform a quantitative evaluation. Our tool gives good detection results on our dataset
asserting that image statistics are a useful prior. We also undertook investigation of the
properties of good cover images by running StegDetect detection tool on images stegified
using JPHide. We found that images with small clusters of high frequency pixels perform
better as cover images though more extensive experiments are required to support the
claim.

Image steganography is a very wide topic in general. Besides LSB steganography tech-
niques, there are methods that work in transform domains and also use encryption schemes.
Due to lack of time and downloadable implementations, we have not been able to analyze
all these techniques but doing a thorough detection analysis of all the algorithms will give
useful insights about image steganography. This comprehensive analysis can also give bet-
ter pointers for what type of images are good cover images. We note that if the hidden
image is encrypted before, then we cannot use image priors directly for steganography
detection, but they should still prove useful coupled with other methods.

Steganography in itself is a very wide topic with techniques to hide and recover video,
audio and text signals in various media. We have only covered some aspects of image-
based steganography in this paper and have shown that image statistics can be exploited
to aid decryption.

References

[1] Ismail Avcibaş, Mehdi Kharrazi, Nasir Memon, and Bülent Sankur. Image steganalysis with
binary similarity measures. EURASIP J. Appl. Signal Process., 2005(1):2749–2757, 2005.

[2] Ismail Avcibas, Nasir Memon, and Blent Sankur. Steganalysis using image quality metrics.
IEEE transactions on Image Processing, 12:221–229, 2001.

12



[3] R. Chandramouli, M. Kharrazi, and N. Memon. Image steganography and steganalysis:
Concepts and practice. pages 35–49, 2003.

[4] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T. Roweis, and William T. Freeman.
Removing camera shake from a single photograph. ACM Trans. Graph., 25(3):787–794,
2006.

[5] Mehdi Kharrazi, Husrev T. Sencar, and Nasir Memon. Cover selection for steganographic
embedding. IEEE International Conference on Image Processing, 2006.

[6] Mehdi Kharrazi, Husrev T. Sencar, and Nasir Memon. Performance study of common image
steganography and steganalysis techniques. Journal of Electronic Imaging, 15(4), 2006.

[7] Niels Provos. Defending against statistical steganalysis. In 10th USENIX Security Sympo-

sium, pages 323–335, 2001.

[8] Niels Provos and Peter Honeyman. Detecting steganographic content on the internet. Tech-
nical report, In ISOC NDSS02, 2001.

[9] Niels Provos and Peter Honeyman. Hide and seek: An introduction to steganography. IEEE

Security and Privacy, 1(3):32–44, 2003.

[10] P. Sallee. Model-based methods for steganography and steganalysis. 5(1):167–189, January
2005.

[11] J. Sun, Z.B. Xu, and H.Y. Shum. Image super-resolution using gradient profile prior. In
Computer Vision and Pattern Recognition, 2008. CVPR ’08. IEEE Conference on, pages
1–8, 2008.

[12] Y. Weiss and W. T. Freeman. What makes a good model of natural images? In Computer

Vision and Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8, 2007.

[13] Andreas Westfeld. F5-a steganographic algorithm. In Information Hiding, pages 289–302,
2001.

8 Appendix

8.1 Database

Figure 9 shows the images in our database.

8.2 Choice of F (x, y, k)

As described in section 4, our algorithm is based upon F (x, y, k) defined as:

F (x, y, k) = (Ik(x, y) == Ik(x − 1, y)) ∧ (Ik(x, y) == Ik(x, y − 1))

∧(I8−k(x, y) 6= I8−k(x − 1, y)) ∧ (I8−k(x, y) 6= I8−k(x, y − 1))

An argument against the choice of such a definition could be that it relies on the assumption that
there will be some pixels of the cover image with higher order bits different, and a more tolerant
definition of it could be

13



Figure 9: Set of chosen 19 images

F (x, y, k) = (Ik(x, y) == Ik(x − 1, y)) ∧ (Ik(x, y) == Ik(x, y − 1))

The above equation captures our intuition that adjacent pixels tend to be same in images. How-
ever, this is true for both the cover image and the hidden image and the second definition does not
exactly capture that and may mislabel benign pixels as hidden pixels. Though this is somewhat
offset by the fact that in order for this to happen, the lower order bits of those pixels in the cover
image need to be same which is less likely. However, Figure 10 compares the output of the two
definitions. Note that using the second definition, other candidate regions pop up even though
the correct hidden region is still the dominant one. This is even more likely to happen in case of
man made scenes, which will have very smooth homogeneous regions. Our database lacks such
images. Using the first definition, the candidate region clearly stands out. The first definition

14



tends to be biased towards not marking the pixels as hidden. Such a bias is even more important
in case of shuffle mode detection as we do not want our algorithm to drift from the solution.

(a)

(b) (c)

Figure 10: (a) shows a stegified image containing a hidden image in simple mode. (b) and
(c) show output of F (x, y, k) using correct definition of k using the first and the second
definition of F (x, y, k) respectively.

Our empirical testing shows that both the definitions work well while detecting simple mode but
the first definition seems to fare better in case of shuffle mode. Of course, the first definition will
fail, say in case of a completely white cover image. But such images are also more susceptible to
visual attacks i.e. the injected data is more likely to create visual artifacts.

15


