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Abstract

We address the problem of developing discriminative, yet %
invariant, features for texture classi cation. Textureriza
tions due to changes in scale are amongst the hardest tofgm
handle. One of the most successful methods of dealing witH==

such \./a”atlo.ns IS basec.j on choosing mter.ESt points and Figure 1. Changing scale can have a dramatic impact on the ap-
selecting their Characte_rlstlc scales [L_a;ebmkal PAMI pearance of a material: (a) and (b) are examples of leaf and (c)
2005]. However, selecting a characteristic scale can be un- 5q () of skin taken at different scales while keeping all other
stable for many textures. Furthermore, the reliance on an parameters constant.
interest point detector and the inability to evaluate featu
densely can be serious limitations.

Fractals present a mathematically well founded alterna- inter-class variation that textures exhibit. It therefbe
tive to dealing with the problem of scale. However, they comes crucial to develop texture features that are not only
have not become popular as texture features due to theirgiscriminative across many classes but also invariantyo ke
lack of discriminative power. This is primarily because) (a  transformations, such as rotation, scaling, af ne illuatin
fractal based classi cation methods have avoided sta@ti  tjon changes, etc.
characterisations of textures (which is essential for aatel Scale variations can have a dramatic impact on the im-
analysis) by using global features; and (b) fractal dimen- aged appearance of a texture (see Figrewhile no lo-
siqn.fgatures are unable to distinguish bgtween k?y textureca“y invariant method can handle scale changes of such
primitives such as edges, corners and uniform regions. magnitude, our goal in this paper is to build descriptors in-

In this paper, we overcome these drawbacks and develor\/ariant to scale changes in the range shown in Figure
local fractal features that are evaluated densely. The fea-

tures are robust as they do not depend on choosing in-
terest points or characteristic scales. Furthermore, it is
shown that the local fractal dimension is invariant to local
bi-Lipschitz transformations whereas its extension issabl
to correctly distinguish between fundamental texture prim
itives. Textures are characterised statistically by mbae!

the full joint PDF of these features. This allows us to de-
velop a texture classi cation framework which is discrimi-
native, robust and achieves state-of-the-art performawxe
compared to af ne invariant and fractal based methods.

@ (b) (© (d)

Scale variations in textures are amongst the hardest to
handle and only modest progress has been made in coming
up with scale invariant features [6, 7, 14, 25, 26, 39]. The
most promising methods which have demonstrated good
performance on real world datasets are [20,37,38]. The ap-
proach followed in [20, 38] is based on the af ne adaptation
process. First, certain interest points are chosen and then
their characteristic scale determined by selecting a lazal
gion for which the Laplacian operator achieves a maximum.
Further processing is done and an af ne viewpoint and illu-
mination invariant descriptor is computed based on the se-
lected region. The technique in [37] is based on a fractal
approach which computes a global multi-fractal spectrum
(MFS) vector formed over three different measures.

In this paper, we address the problem of classifying sin-  While features derived from interest points and the af ne
gle images of textures obtained under unknown viewpoint adaptation process have proved to be very useful for match-
and illumination conditions. As is well documented by now, ing, they could be inappropriate for many texture classi -
this is an extremely demanding task, specially under suchcation tasks. Firstly, interest point detectors typicalip-
unconstrained settings, due to the large intra-class aatl sm duce a sparse output and might miss important texture prim-

1. Introduction



the case of fractal features as well. Note that local fractal
features are already the norm in fractal based texture seg-

: @@))@ c0e mentation, where many methods [5, 13, 17, 36] proceed by
© rst calculating local fractal features, then clusteringida-
belling them followed by various post-processing stepsisuc
© as boundary smoothing.
® ® Secondly, many point sets such as those representing

image corners, edges, homogeneous regions and other im-
portant texture primitives have identical fractal dimemsi.
As a result, the performance of fractal based classi cation
schemes has often not been as good as other competing
methods. For instance, classi cation results obtainechiy t
leading fractal based method [37] are inferior to those ob-
tained by af ne adaptation [20] on the UIUC dataset.
: In this paper, we overcome these drawbacks and develop
(d) (e) ) local, fractal based features which can be evaluated densel
Figure 2. The af ne adaptation process might not be suitable for The features are robust as they do not depend on character-
textures: (a)-(c) are images of felt, velvet and lambswool that do jstic scale selection or the af ne adaptation process. Fur-
not posses characteristic scales. Hence, arbitrary regions are d%ermore, it is shown that the local fractal dimension is in-
tected; (d) is an image of paper where no interest points Were,qjant g |ocal bi-Lipschitz transformations, such asaloc
found; (e) is an image of a Brodatz texture; and (f) shows the fne or perspective projections and certain smooth, non-

detected regions when (e) is scaled down by half and then rescalecﬁnear transformations. In addition. we develob a new frac
back (after region detection) to original size for comparison pur- ' ’ P

poses. Note that the regions in (€) and (f) do not correspond. All t@l feature for texture classi cation, the local fractahgth,
regions were detected using the Hessian-Af ne detector [23]. and show that it can distinguish between important texture

primitives such as edges, corners, uniform regions, etc. at

the cost of reduced invariance. Textures are then charac-
itives. Secondly, a sparse output in a small image might notterised statistically by modelling the full joint PDF of te
produce enough regions for a robust statistical charaeteri features. This allows us to develop a texture classi ca-
tion of the texture. As regards the af ne adaptation process tion framework which is dlscr|m|nat|ve, robust and achgve
there exist many classes of textures which do not posses 400d performance as compared to the state-of-the-art af ne
characteristic scale. Furthermore, there are always sssueinvariant and fractal based methods [20, 37].

@

regarding the repeatability of the detector and the stgbili ~ The rest of the paper is organised as follows. Section
of the selected region [23]. As a result, features computedbrie y reviews applicable fractal theory and how it has tra-
via such a process can be unreliable (see Figyre ditionally been used for texture classi cation and segmen-

Fractals present a mathematically well founded alterna- {@tion. Next, local fractal features are developed and thei
tive to dealing with the problem of scale. They have found d|scr|m!nat|ve power and invariance p_r(_)pernes _dlscussed
application in classi cation [4, 10, 15, 24, 34, 37], segriaen In Section3, the new features are empirically validated on
tion [5, 13, 17, 36], synthesis [16] and other important tex- the UIUC [20] and CUReT [9] databases. We conclude in
ture problems [1, 19, 22, 33, 35]. However, the performance S€ction4 and explore avenues of future work.
of fractal based texture classi ers has often lagged behind
the state-of-the-art. This is primarily due to two reasons. 2. Fractal Features

Firstly, fractal based classi cation methods have tradi-
tionally avoided a statistical characterisation of tegtLpre-
ferring to model them using globally computed fractal di-
mensions or MFS vectors. This is a signi cant shortcoming
as textures have often shown to be best described by the
statistical distribution of textons [3, 8, 12, 21,27, 31JorF  Review Very loosely speaking, a perfect fractal is a shape
instance, to make an analogy with Iter banks, considerable which, amongst other things, appears similar at all scales
progress was made in both classi cation and synthesis byof magni cation. Due to this property, a perfect fractal can
modelling textures using rst the mean, then the mean andbe decomposed intd similar copies of itself, each scaled
variance and nally by the full joint PDF of locally com-  down by a factos, which tile the original shape exactly. It
puted lter responses [30]. As such, it should be expected often turns out to be the case that the quantitleands are
that the same progression should yield superior results inrelated by a power law, i.& (s) / s P whereD is de ned

Before developing the proposed local fractal features and
discussing their properties, we brie y review fractal tingo
as applicable in our scenario.



of fractal dimensions and therefore avoids a statistical de
scription of the texture. The MFS vector is proved to be
invariant to geometric global bi-Lipschitz transforms dad
multiplicative changes in the illuminant intensity (fuflize
illumination invariance can't be achieved due to propsrtie

of the Gaussian measure). The MFS vector is quick to com-
pute and achieves good results on the UIUC database using
lar copies of itself scaled by a factor ef = 0:5. The num- .ne'ares't neighbour classi ers. Nevertheless the perchmah
ber of half-scaled copiedl equals 2, 4 and 8 for the line, IS inferior to that of [20]. The authors note that this is pri-

square and cube respectively. This leads to fractal dimensionsMarily due to the MFS vector being relatively less robust

Figure 3. Each of the shapes can be decomposedNn&mi-

of D = logN=logs = 1, 2 and 3 as expected. However, !0 illumination changes and also as the images in the UIUC
the Sierpinski triangle, by construction, has oty = 3 half- database are not large enough for stable MFS vector compu-
scaled copies of itself leading to a non-integral fractal dimension tation. However, as will be shown, the poor performance is
D = log3=log0:5 =1:585. also due to the use of globally computed fractal dimensions

which are not very discriminative.

to be the fractal dimension of the Shape (though there eXiStLoca| fractal features Our approach is based on the as-
many other de nitions too [11]). For smooth shapes from symption that, given a suitablmeasure , the “size” of
classical geometry, such as lines, squares, cubes, etc. thRycal point sets in textured images follows a local power
fractal dimension equals the topological dimension. How- |aw, To take a concrete example, given an imagdet
ever, for irregular point sets, the fractal dimension isamot (B(x;r)) be the sum of all pixel intensities that lie within

integer but lies between the bounding topological dimen- 3 closed disig,of radiusr centred at an image point i.e.
sions (see Figurg). As such, it can be loosely interpreted as (B(x;r)) = | (y). We hypothesise that

a factor governing the irregularity of the point set or some- Ky

times as the roughness of the shape. The concept of fractal (B(x:r)) / rP®™ 1)
dimension has been generalised to many cases where the ) _

point set being considered is not a perfect fractal [11]hsuc ) log (B(xir)) = D(x)logr+ L(x) @

as multi-fractals and statistically self similar fractals where D(x) is the local fractal dimension, also known
There are three primary ways in which fractal features as the Hlder exponent_ While this power law assump-
have been computed from images and applied in texturetion might appear overly restrictive at rst, it turns out to
anaIySiS. In the rst, the surface which generated the image be a Surprising|y good approximation for many real world
is modelled as a fractal, typically using a fractional Brewn cases [11]. In particular, Figueillustrates the quality of
ian motion model, and its roughness calculated in terms ofthe approximation on four real world texture images taken
the Hurst parameter or extensions [10, 15]. The surfacefrom the UIUC database. THeg versuslogr plots for
roughness then acts as a parameter for discrimination begight image points are shown in the graph. As can be seen
tween classes. In the second method, an imagedirectly iy each of the eight cases, the points lie along a straigét lin

modelled as an intensity surfaGe y; 1 (x;y)) and its frac-  jndicating that the power law is being followed faithfully.
tal dimension is used to parameterise the texture [17,24,36

Finally, an image can also be seen as a union of point sets,

each of whose fractal dimension is taken together to form

an MFS vector [34, 37]. However, in much of previous re- . . 5
search, the focus has been on a scale variant analysis of tex

tures rather than deriving scale invariant features.

The method of Xwet al. [37] falls in the third category. O
In it, a 26 dimensional global MFS vector is computed per O
measure. Given a texture image, Gih measure moment
is calculated as a sum over a partmonmg of the image into Figure 4. Thelog versuslogr plots for 8 points in 4 images
non-overlapping boxes of length Assuming that the mo-  from the UIUC texture database are shown. Firstly, all the 8 plots
ment varies withr asr , the MFS vector is calculated from  are straight lines indicating that the local power law assumption
via a Legendre transform. Three measures are used in alholds true. Secondly, all 4 lines from the same class are clustered
(Gaussian, energy and Laplacian) and the individual MFS together (in fact, for each, the 4 points per class appear near
vectors concatenated to give a nal 78 dimensional MFS coincident) with a distinct difference between the 2 classes. This
feature vector. In essence, the MFS vector is a collectionshows that local fractal features can be used to distinguish textures.

log r



While there exist many methods for estimating the frac- de nition. In fact, D is invariant to bi-Lipschitz transfor-
tal dimension, we choose to simply read bffx) andL (x) mations of the image including af ne and perspective dis-
as the slope and intercept of tlegy versuslogr graph tortions as well as certain non-linear mappings suckZas
respectively (more sophisticated techniques can only im-ande* on the bounded interv@l0; 100] On the other hand,
prove estimates). It should be noted that estimates of theL has more discriminative power but in practise only rota-
slope and intercept can be obtained densely, without rely-tional invariance. These points can be seen as follows (the
ing on any pre-de ned interest point detector. Furthermore proof proceeds along the lines of the one in [37]).
no speci ¢ characteristic scale is chosen. In fact, rohbinst | A bi-Lipschitz functionf must be invertible and satisfy
tting methods can be utilised so that even if there are noisy the constraint;kx  yk k f(x) f(y)k ckx vk
measurements at a few scales (which could in uence char-for constantx, ¢; > 0 (essentially, smooth invertible
acteristic scale selection) the slope and intercept of tteel mappings where both the original and the inverse function
line remain relatively stable. have bounded rst derivative are bi-Lipschitz). Given a
point x in an imagel for which the power law holds, i.e.
log | (B(x;r))= Dlogr+ L, we would like to determine

Discriminative power and invariance While it might be , \ o )
the invariance oL andD for a bi-Lipschitz transformed

plausible to apply the fractal model to textures, we stilldha
to determine how useful fractal features are for classi ca- Mmagel Xf (x)) = 1(x). . .

tion. In fact, it turns out that the local fractal dimension b Let B(f (x);r) be a closed disk or radlusocentred
itself is not very discriminative. As Figuredemonstrates, ~around the transformed poih{x) andlog o = D"logr +
many fundamental texture primitives, such as homogeneoug- P€ the log of its measure. Sintes invertible, there ex-
regions, edges, corners, etc. have identical local fratital ~ 1StS & point seP which is the pre-image d (f (x); r) and

mensiorD (x). However, the local intercepi(x) isagood ~ Nence (P) = 1o(B(f (x);r)). The bi-Lipschitz con-
feature for distinguishing between such primitives. In-gen Straint now ensures th&(x;r=c;) P B(x;r=cy)
eral,exp(L) can be interpreted as tBedimensional fractal SO that | (B (x;r=c2)) 1(P) 1 (B(x;r=cy)) since
length of , i.e. the “size” of when measured with a unit & subset's measure must be less than or equal to the orig-
of “size” r0 . As such, we de nd_ (x) to be the local (log) ~ nal set's measure. Noting thai (P) = 1o(B(f (x);r))

fractal length. While the idea of lacunarity [17,32] has been @nd substituting for the power law giveslog () + L
experimented with to distinguish fractals with identical d  2°10gr + L®  Dlog () + L whichimplies thaD®= D
mension, fractal lengths have not been used as features foPUt L 6 L. Thus the local fractal dimension is invari-
texture classi cation to the best of our knowledge. antto pl-Llpschltz transformations whereas the localtithc
The fact that local fractal features can be used to distin- €Ngth is not.
guish texture classes can also be seen from FiguiBvo
images of fabric and two of granite from the UIUC texture Statistical characterisation In order to characterise tex-
database are shown along widg versuslogr plots of  tures statistically, the full PDF of the fractal featuresisd-
eight image points. The lines from the fabric points are elled (details are given in Secti@). Figure6 shows some
clustered together as are the lines from the granite pointstexture images, and corresponding fractal dimensionidistr
though the two sets are distinct. butions. As can be seen, the distributions do not change
As regards invariance, any image transformation which much within a class and are yet distinct across all four
leaves the set ofs unchanged, such as image rotation, will classes (two different types of brick and two types of fabric
have no impact o> andL (af ne illumination transfor-  This is despite the fact that there is considerable in@asc
mations can also be incorporated in this category). Further variation including signi cant scale and perspective gan
more, for perfect fractal€) is invariant to scale changes by  formations as well as non-rigid surface deformations.
While distributions of local features are by now stan-
dard in texture classi cation [3,8,12,18, 21, 27, 30, 31] we
. . would still like to brie y point out their advantages over
; | | globally computed feature vectors. Firstly, feature distr
<|-- S > < > butions are more representative than global averages. For
instance, most natural surfaces, and particularly inh@anog
: neous ones, will have an entire distribution of fractal dime
v v v sions corresponding to areas of different roughness rather
Figure 5. For uniform regions, edges and corner&B (x;r)) than a global surface roughness parameter. Secondly, local
equalsr %, 5r? and ;r? respectively. The fractal dimension is  distributions can be made relatively robust to real world ef
2 in each case. However, the fractal length is different and canfects such as shadowing or occlusion of small parts of the
therefore be used to distinguish between such texture primitives. jmage. Thirdly, locally bi-Lipschitz invariant featurearc




the absolute value of the Iter responses themselves. Thus,
basing fractal features on Iter response measures depends
on the speci ¢ application at hand. It should be avoided if
there is a signi cant drop in the level of invariance. How-
ever, in our case, we also empirically veri ed that using |-
ters does indeed lead to better classi cation performance.

We therefore characterise textures by the distribution
of local fractal dimension and fractal length features ob-
tained from multiple Iter measures rather than just the
single measure discussed so far. De niiy(x) =
[D ,(xX):::D ,(x)]andL(x) =[L ,(x):::L , (X)] we
estimate the joint density d, as well as that of. This
boosts classi cation as observing how two measures covary
provides more information than knowledge about how each
varies independently.

Multiple measures are generated by rst pre- Itering the
images using the MR8 lter bank [31] and then applying
the standard sum measure to each of the Iter response im-
ages. The MR8 lter bank is a rotationally invariant, non-
linear Iter bank with 38 Iters but only 8 lIter responses.

It contains edge and bar lters, each at 6 orientations and
3 scales, as well as a rotationally symmetric Gaussian and
Laplacian of Gaussian Iter (see Figui®. Rotational in-
variance of the edge and bar Iters is achieved by taking

Figure 6. Images from four texture classes are shown along with 1€ Maximum response over all orientations (more details
their associated distributions of local fractal dimensions. Note that &N be found in [31]). Thus, in our case,(B(x;r)) =

both classes of brick images have signi cant scale and perspec- y xk rIfi(y)i wheref; = max F; ?1forl i 8

tive distortions while the two types of fabric also have consid- represents thé-th lter response image and the absolute
erable non-rigid surface deformation. Nevertheless, the denselyvalue of Iter responses has been taken to satisfy the mea-
sampled feature distributions are very similar within a class (due sure requirement 0.

to bi-Lipschitz invariance) while also being easily distinguishable Each
across the four classes.

Iter is made zero mean so as to be invariant
to shifts in the illumination intensity. However, rather
than achieve full af ne illumination invariance by post-
account for more types of transformations than globally in- processing Iter responses to have unit variance, we nor-
variant ones. Finally, assuming that a fractal model holds malise by Weber's law [21, 31] instead as this is empiri-
locally is less restrictive than assuming it holds glohally cally found to gives better results. Also based on empiri-
cal results, only ve measures were used for calculafing
3. Texture Classi cation The fractal dimensions calculated using the other three mea
sures were found to be highly correlated and thus discarded.
In this section, we make concrete the local feature dis- These measures correspond to the Gaussian, medium scale
tributions and classi ers that are used. Experimentalltesu bar Iter and smallest scale edge Iter. However. all eight
are also presented on the UIUC and CUReT texture data-measures were used for calculating

bases. In summaryD andL are estimated at each pixel The

Features Most fractal methods are based on measures

calculated over lter responses. For instance, [37] geteera

features by de ning measures over Gaussian, Laplacian and

energy lters. Filters can smooth over image noise and lead

to more robust features. However, they also have the draw-

back of lowering the level of bi-Lipschitz invariance. Note

that this might not be a serious limitation in some cases as

bi-Lipschitz invariant features are dependent on the rate o

change of Iter responses which might be less affected than Figure 7. The MR8 Iter bank.



local fractal dimensio (x) is a 5 dimensional vector in-  for examples). However, a drawback is that it is also much
variant to geometric bi-Lipschitz transformations (madlul smaller than the CUReT database, both in the number of
Iter response variations) while the local fractal lenditfx) classes as well as the number of images per class. It also
is 8 dimensional and only rotation invariant. BdhandL has very few instances of a given material so that it is dif-
are chosen to be invariant to local shifts in the illuminant cult to perform categorisation experiments [3, 12] or de-
intensity alone rather than full local af ne illuminatiom- duce generalisation properties of features. Furtherntioee,
variance. high resolution of the images makes it unclear how features
will performance in real world settings where textured re-

Classi cation Our classi cation approach is standard and 9ions on objects might be much smaller. Nevertheless, as
is based on nearest neighbour matching using a bag of vifar as scale and other viewpoint variations are concerned,
sual words model. Owing to their different levels of invari- the UIUC database is by far the most challenging and we
ance and discriminative power, fractal dimension and frac- therefore test the proposed features on it.
tal length features are not combined into a single feature.  T0 assesses classi cation performaniy, training im-
Instead a separate classi er is learnt based on each featur@ges are randomly chosen per class while the remaining
individually — though the procedure for learning either is 40 M images per class are taken to form the test set.
identical. Note that [20] present single descriptor results for thé sol

In the learning stage, either fractal dimension or frac- tary case oM = 10 (all other results are for combinations
tal length features are computed densely from each trainingof descriptors such as spin images and RIFT). We therefore
image. For every texture class in turn, features from a ran-implement their system so as to make comparisons as the
dom|y chosen subset of training images are aggregated an@aining set size is varied. The best performance achieved
clustered using thi-Meansalgorithm. The resultant clus- by [20] for M = 10 is 90:15% (mean value over 200
ter centres are known as textons and are aggregated ovegPlits) using spin image descriptors and combined classi-
classes to form a dictionary of exemplar features. Given a €rs based on Harris-af ne and Laplacian blob detectors.
texton dictionary, a model is learnt for a particular tragni  Our implementation of their system achieves a comparable
image by labelling each of the image pixels with the tex- 90:17 1:11%
ton that lies closest to it in feature space. The model is the
normalised frequency histogram of pixel texton labellings _M D L (20] [37]
Each texture class is represented by a number of models cor- 20 95.40 0.92  94.96 0.91 93.620.97 93.04
responding to training images of that class which coarsely 15 94.09 0.98 93.66 0.96 92.420.99 91.11

In the classi cation stage, the set of learnt models isused_05 85.35 1.69 84.96 1.66 84.771.54 82.99
to classify a novel image into one of the texture classes. () (b) (©) (d)

This proceeds as follows: the fractal dimension or the frac- Table 1. UIUC results as the number of training imalyess var-

tal length features of the test image are generated and th%e(;js: é?)[éroaicg ddI[g];]nrselggéégz/glsdl\jlelgzgtg;]chlg;gi;% tg:\/ggghn's
plxels labelled with texton_s from the approp_nate textor di have been computed over 1000 random splits of the training and
tionary. Next, the normalised frequency histogram of tex- test set.

ton labellings is computed. A nearest neighbour classker i

used to assign the texture class of the nearest model to the Table 1 compares the performance of our local fractal

testimage, where the distance between two _no_rmahsed fre'dimension and length descriptors with the methods of [20]
qguency hlstoglgams is measured using thstatistic, where

) L i vi) . and [37]. As can be seen, the performance using eidher
(X;y) = 3 | ==y Inour experiments, we found | s petter than that achieved by the state-of-the-art fracta

that the size of the texton dictionary had very little affect based method of [37] Our results also compare favourab|y
on performance. The size of the dictionary was therefore yith that of [20]. ForM = 20, local bi-Lipschitz invari-

set to about 2500 textons for both the UIUC and CUREeT gn; fractal dimension features achieve classi cationgate

databases. 9540 0:92% while the af ne adaption based spin im-
age features of [20] achie@3.62 0:97% Local frac-
Results on the UIUC database The UIUC database [20] tal length features achie@:96 0:91% It is interesting
contains 40 images each of 25 different texture classesto note that the performance of 5D fractal dimension fea-
thereby giving 1000 images in all (each image has reso-tures is better than that of the 100D spin images of [20].
lution 640 480. The database represents a major im- This is due to the advantage of densely sampling features
provement over the CUReT textures [9] in that materials while avoiding characteristic scale selection. What is also
are imaged under signi cant viewpoint variations and some curious is that 8D rotation invariant fractal length featir
also have considerable surface deformations (see Fiyure also achieve such good performance despite the large scale



changes present in the UIUC dataset. However, this result isnferior to 97:64%which is the best rotation invariant result
consistent with the trend in [28] where vanilla rotatiogall  obtained by nearest neighbour classi cation on this data-
invariant patches were shown to gi9&83 0:63%using base [29]. The best rotation invariant results for any ¢lass
standard nearest neighbour classi ers. eris 99:02%[2] when Gaussian Bayes classi ers are used.

Results on the CUReT database The CUReT data- 4. Conclusions

bgse [9] i; a larger database and contains 61 texture classes In this paper, we have developed locally invariant, dense
with 205 Images per cla_lss. However, the standa_rd methOd'fractal features for the canonical texture classi catioalp

ology on this dat_al_)as_e is to report results for 92_|mages P€llem. Features based on the fractal dimension are invari-
class. The remaining images do not have a suf ciently large ant to local bi-Lipschitz transformations and are robust as

portion of the texture visible to be cropped from the back- they avoid interest point detection and the af ne adaptatio

gro_ll_Jr?d and are theLefor(?feXf[;Iud?r(]j.t ke the CUReT dat process. Fractal length features are slightly more diserim
ere are a number otfactors that make the el datayative but posses only rotational invariance. Both feature

base challenging for a scale invariant method. To start,with can be made invariant to af ne illumination transformason

the_images In the database (.jo nqt exhibit signi cant scale if desired. On the UIUC database, classi cation based on
variation. As a result, scalel |n\{ar|ant fegtures tend to PET these features yields results which are at least as good as
forr_n Worse thgn featgres_ W'th J.USt rotation or even no In- leading fractal and af ne adaptation based methods. How-
yarlance but higher dlsgrlmlnat|ve pgwer. In addition, the ever, on the CUReT database, the performance of the pro-
images have IOV.V reSOIUt'OQQO. 200p|xels_) and are there- posed features is dramatically better. These results demon
fore not well suited to sparse interest point based methodsStrate that the fractal model is widely applicable to many

Ne\llerthﬁjlessd, t(;]ne (]ian expeclt 1o see S?Ch fr? n(;jmhonjc:n tt.h?exture classes and that fractal features provide a vidble a
realworld and theretore a scaie Invariant method Shotld st o yative to the af ne adaptation process for dealing with

yield acceptable results on the CUReT database if it is to bescale and other viewpoint variations in textured images.

considered widely applicable. Yet, it should be noted that even though the best results
M D m are iq the mid nineties or higher, t.he standard texture clas-
26 9612 037 9750030 Si cathn problgm can not be con&dergd solved or easy. In
23 9250051 94.69 045 gctqallty, classi cation .performar?ce using only a few trai
12 86.70 0.72 89.74 0.66 ing image can drop quite dramatl(_:ally even if there are only
06 78.05097 8167096 a small number of c_Iasses_. C_onS|derabIe progress 'Fherefore
@ ©) needs to be made in desgnmg_ features and classi ers be-
Table 2. CUReT results as the number of training imalgess fore pgrformance can be co_nS|dered acceptable. Further—
varied: (a) fractal dimension and (b) fractal length. Means and more, improved understanding of features and classi ers

standard deviations have been computed over 1000 random split§@n only bene t both the categorisation problem as well as
of the training and test set. the simultaneous segmentation and classi cation problem

in cluttered, real world scenes.

The evaluation methodology is similar to that used onthe ~ An area which we would like to explore as future work
UIUC databaseM images are randomly chosen per class is to see if the fractal model can be made even more ap-
for training, while the remainin2 M images per class plicable. The sum measure used in this paper does not in-
are taken to form the test set. TaBlpresents the classi ca- duce local fractal behaviour in all images. Even when it
tion performance of the local fractal dimension and length does, there is no guarantee that the resultant featurelseare t
features. FoM = 46 training images, they achieve per- most discriminative. It would therefore be preferable to ac
formances 006:12 0:37% and97:50 0:30% respec- tually learn a measure which induces fractal behaviour for
tively. By contrast, the af ne adaptation method of Lazeb- the given classi cation task and leads to improved perfor-
nik et al. using nearest neighbour classi cation achieves mance.
only 7250 0:7% [38]. This result is somewhat surpris-
ing but highlights the inadequacies of sparse, af ne adapta Acknowledgements
tion based methods. Even when multiple high dimensional
descriptors are combined with multiple detectors and so-
phisticated SVMs employed, the af ne adaptation results
improve to only95:30  0:4%7/38].

As is to be expected on the CUReT database, rotation in-Reﬂ:"rem:es
variant fractal length feature achieve better results than [1] M. F. Barnsley and L. P. HurdFractal Image Compression
bi-Lipschitz invariant features. However, these are sligh 1992.

We are grateful to P. Anandan, Jitendra Malik and An-
drew Zisserman for helpful discussions.
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