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Abstract pearance space should be low-rank in general. An exception
is the case of Lambertian scenes, for which a number of ele-
Low-rank approximation of image collections (e.g., via gantresults exist. Shashua [23] proved that three images ar
PCA) is a popular tool in many areas of computer vision. sufficient to span the full range of images of a Lambertian
Yet, surprisingly little is known justifying the obsereati ~ scene rendered under distant lighting and a fixed viewpoint,
that images of an object or scene tend to be low dimen-neglecting shadows. Belhumeur and Kriegman [2] consid-
sional, beyond the special case of Lambertian scenes. Thigred the case of attached shadows, observing that the valid
paper considers the question of how many basis images arémages lie in a restricted range of 3D subspace which they
needed to span the space of images of a scene under realealled theilllumination cone Basri and Jacobs [1], and Ra-
world lighting and viewing conditions, allowing for gen- mamoorthi and Hanrahan [20] independently showed that
eral BRDFs. We establish new theoretical upper boundsillumination cone is well approximated withbasis images.
on the number of basis images necessary to represent &Ramamoorthi more recently [19] improved this bound to
wide variety of scenes under very general conditions, andimages, bringing the theory in line with empirical studies
perform empirical studies to justify the assumptions. We on the dimensionality of face images [4].
then demonstrate a number of novel applications of lin-  very little is known, however, about the dimensionality
ear models for scene appearance for Internet photo col- of images ofreal-world scenescomposed of real shapes,
lections. These applications include, image reconstancti  BRDFs, and illumination conditions. Consider, for exam-

occluder-removal, and expanding field of view. ple, the images of tourist sites on Flickr [5], which exhibit
_ vast changes in appearance. While it may seem difficult
1. Introduction to prove anything about such collections, a key property of

real-world scenes is that they are not random. In particular
man-made scenes tend to be dominated by a small number

. . X . o of surface orientations. And while BRDFs can be very com-
dimensionalityof this appearance space? More specifically,

; lex, real BRDFs can be well-approximated by a low-rank

suppose you stacked all photos taken of a particular scene. ; . . ) . ;
. ) ) : inear basis [15]. Similar considerations apply for illumi

as rows in a matrix — what is the rank of that mattix?

: . ) . nation; for example, studies have shown that the space of
It is well known that certain types of image collections . ; : .
: ) ._daylight spectra is roughly two- or three-dimensional [26]
tend to be low-rank in practice, and can be spanned via . . .
. L S Based on these observations, this paper introduces new the-
linear combination of a small number of basis views com-

. . S . oretical upper bounds on the dimensionality of scene ap-
puted via tools like Principle Component Analysis (PCA) . . .
or Singular Value Decomposition (SVD). First exploited in pearance (improving on previous results by Belhumeur and

the early work on eigenfaces [12, 27], these rank-reductionK”egm{?m [2])'. Wh|le we mak_e a few limiting assump-

: tions (distant lighting, distant viewer, no cast shadows, i
methods have become the basis for a broad range of SUCterreflections or subsurface scatterin ), these resuiltg br
cessful applications in recognition [18, 16], tracking,[9] 9.

background modeling [17], image-based rendering [28] the theory to the point where it can capture much of the ex-

BRDF modeling [10, 15], compression and other domains. treme var_labl_hty in these_ Internet photo coIIectlons.. _
In spite of the wide-spread use of rank-reduction on im- _ 1€ highlights of this paper include a factorization

ages, however, there is little theoretical justificatioat thp- gagzwfarksz)gfi:ag’z'n%g::getnhs,fr}?;zeqlﬁit'on: F';goé
uced i ion 2. i i work, wi v

1By dimensionality, we refer to linear dimensionality ingfgiaper. new upper bounds on the number of basis images, allow-

Real world scenes vary in appearance as a function of
viewpoint, lighting, weather and other effects. What is the
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F@gure 1_: Four intgrpretations of factorization of imagema 2.1.1 Basis Images
trices. First, each image can be expressed as a linear combi-
nation of a set of basis images (a). Alternatively, the peofil First, the rows ofD can be interpreted as basis images, de-
of each pixel can be expressed as a linear combination of anoted byB’, and the rows oC can be interpreted as coef-
set of basis profiles (b). In the case of a Lambertian sceneficients. This interpretation, shown in Figure 1(a), is com-
the basis profiles and basis images assume special meaningionly used. For instance, in work on eigenfaces [12], the
(). Finally, (d) shows the reflectance map interpretation. eigenvectors obtained from PCA comprise the basis images

. ) ) o o ) (assuming mean subtracted data). Here each ibaigea
ing for variable illumination direction and spectra, view- |inear combination of basis images:

point, BRDFs, and convolution effects (e.g., blur). Im-
portantly, all prior low-rank results for Lambertian scene k
[23, 2, 1, 20, 19] do not apply under variations in light L=> a;B]. 2)
spectrum (even if the images are grayscale). We introduce j=1

new results that allow the light spectrum to vary in certain

ways, greatly broadening the scope of application (e.g., to2.1.2 Basis Profiles

outdoors). Finally we demonstrate a number of interesting
applications of low-rank linear models to problems in com-
putational photography (Section 3.3).

Another way to interpret this factorization is that each-col
umn (profile)P; of M can be interpreted as a linear com-
bination of columns ofC, with coefficients determined by

columns ofD, as shown in Figure 1(b). In this interpreta-

2. Rank of the Image Matrix tion, the columns o€ form basis profiles, denoted B
We present theoretical results in this section. We first &

introduce a new framework to analyze the factorization of P. = Z b BY. 3)

images (Section 2.1) which yields new insights and results ! P e

in Section 2.2. Finally, we introduce wavelength (Section
2.3) bringing the theory closer to the real world images cap- 2 1.3 The Lambertian Case
tured by cameras.

Throughout the paper, we assume that images are [itFOr Lambertian scenes, neglectaugy shadows, the rank of
by distant light sources and observed from distant view- M i 3, and the basis profiles and the basis images assume
points. We ignore indirect illumination effects like trquas- a special meaning, shown in Figure 1(E).is a3 x n ma-
ent and translucent materials, interreflections, castahad i, where thej* column of D encodes the normal times
and subsurface scattering. Our theory does account for atthe albedo at thg'" pixel in the sceneC is am x 3 ma-
tached shadows. Initially, we also make the assumption thailix where thei* row encodes the lighting direction times
images are taken from a fixed viewpoint, which we relax in the light intensity for the*" image. Hence, the basis im-

Section 2.2.3. ages represent scene properties (normals and albedos) and
the basis profiles encode illumination properties. In parti
2.1. Four Factorizations of the Image Matrix ular, each basis profile contains the light intensity along a

_ o coordinate axis for each image.
Consider a set ofm, n-pixel images of a scene,

I,,1,,..., 1, taken under varying illumination conditions.
Consider them x n matrix M obtained by stacking
I;,1,,...1,, as rows of the matrix. Each row &I is an The reflectance map [11], is defined for an image of a scene
image, and each column describes the appearance of a sirwith a single BRDF as a functioR(ii) that maps scene nor-
gle pixel, sayr, under different illumination conditions, re- mals to image intensityR (1) can be encoded as an image

2.1.4 The Reflectance Map Interpretation



of a sphere with the same BRDF as the scene and taken from From the reflectance map interpretativh= CD, it is
the same viewpoint under identical illumination condison  easy to see that only,, rows of D will be non-zero when
We denote the image of the sphere correspondirlg to the number of distinct normals in the sceng:is Hence,

by R,;, and write rank(D) < k, , which gives us an upper bound bf on
L =R,’D (4)  rank(M) as well.
whereD is defined as: Now consider the more general case where theré:,are
e materials and;,, normals in the scene. In this case, we first
D(j, k) = { 0 if :11 #_mj (5) define reflectance maps corresponding to every BRDF for
L otherwise eachimage, i.e.,

wherern; is the normal at thg'" pixel of R; andi* is the kp
normal at thek*” pixel in the scene. The*" column ofD 1,7 = § R;'D, (8)
can be thought of asrgormal indicator functionvy,. =1
It often happens that the BRDF is same across the scene T
) . o whereD; now encodes the distribution of normals corre-
save for a scaling factor (the albedo). This factorizatian c : h L
. . . : sponding to thé"* material, i.e.,
also incorporate per pixel albedos if we define ke col-

umn of D asa’v,, wherea” is the albedo of thé'” pixel. . 0 if A £ 1, orp* #£ p

Now, observing thaD does not depend o) one can Dy (j, k) = { o otherwise (9)
write M = CD where C contains the reflectance maps
R;’s stacked as rows. Hence, M:Zf;1 C,D;, which implies that

We can alternately defin®;(f) using the rendering  rank(M)<k,k,. More preciselyrank(M)<3 ", N(l)
equation which under our assumptions, can be written as  whereN (1) is the number of orientations corresponding to
materiall. Hence we have proven the following:

~

Lz :/oﬁpm W W)Ly (W) (=" 0" ) dw’  (6)
@) Q ( M) & Theorem 1 Consider a scene with, different BRDFs and

where the integral is over a hemisphere of inward direc- ¥» distinct normals. Consider the images I, . . ., I, of
tionsw’, w is the viewing direction for point, p* is the the scene obtained from a fixed distant viewpoint under dif-
reflectance function at point (evaluated at”’, w), Ly, (') ferent distant illuminationd.s,, Ly, ..., Ly, . Assuming

is the light arriving from direction,’ for imagel;, anda® that there are no cast shadows, the rank of the malfix

is the normal at-. The + subscript on the dot product indi- ©obtained by stacking, I»..I,, as rows is at most, k.
cates that it is clamped below toto account for attached
shadows.

Given this, we can defing; (1) as

It is also instructive to writdM = Zfil C,D; in the
form M = CD so that basis images and basis profiles can
be explicitly defined. This can be done by stackifigside

L , , ~ A , by side, i.e.C = [C;|Cy|..|Cy, ]| and stackind); one over
Ri(a) = /Q P, @)Ly (W) (o B) dw ) another. Finally, [We|car|1 r|emo]ve all zero rows frivmand
corresponding columns fro@ leaving at most:,k,, rows
in D, which correspond to basis images, and basis profiles
are the remaining columns €. The columns oD are of

wherep” has been replaced hy asR; represents a scene
with a single BRDF.

2.2. Upper Bound on Rank of M/ the formd, = ov;, wherevy, is a0, 1 vector that can be
_ ) ~ thought of as aormal-material indicator function
Belhumeur and Kriegman [2] proved that, given an arbi-  The result may be modified to accommodate anisotropic

trary scene with a single material akd distinct normals,  BrDFs as well. For anisotropic materials, one needs to
the space of images of the scene taken from a fixed, dis-parametrize by both therientationand the normal. Hence,
tant viewpoint with distant lighting and no cast shadows gne can derive the same bound whiereow refers to num-

is exactly k,-dimensional. This result justifies the use of per of distinct orientations times normals in the scene.

linear models for real-world scenes. For instance, many |n the following sections, we extend this result to a num-
man-made scenes consist of large planar regions (such ager of common scenarios.

walls and ground), and therefore contain only a small num-
ber c_)f distinct nprmal_s. Curved surfaces may also be aP-5 51 Linear Eamilies of BRDEs
proximated by piecewise planar surfaces.

We first show how an upper bound &f, can be seen  While the world is composed of diverse materials, it has
to hold true for a scene with a single BRDF using the re- been argued [21, 15] that the space of BRDFs is low dimen-
flectance map interpretation of the factorization and thensional. We also verify this by conducting experiments on
extend it to a more general case. CUReT [3] database of BRDFs [6].



Thus, we now generalize to the case whgénis con- Consider the family of images obtained by convolv-

tained in the linear span dfp1, p2,...,pr. }, i€, p* = ing image I(z,y) by an arbitrary K x K kernel F.
P
5 ¢i(z)py. In this casel, can be represented as a sum of Th}e{ resg{ltmg image can be expressedlag.y (v, y) =
matrix product;[l-T _ Zfﬁl R,,”D,, where et ZFI F(z‘,j)l(x —i,y—7). Sl_nce the space of each
- of the shifted image$(x — ¢,y — j) is at most rank, &,
. 0 if A* £ 1, it follows that the space of all filtered images of the scene is
Di(j, k) —{ a%ci(z) otherwise (10)  at most ranki 2k, k,,.
An important special case is the family of radially sym-
Hence the upper bound &fk,, still holds, i.e., rank is di-  metric filters (e.g., blur, sharpen). These filters can be

mensionality of BRDF family times the number of normals. spanned by a fewasis filters(The basis filters are simply
circles of varying radii.)
2.2.2 Low-dimensional BRDFs Suppose that the family of filters we are concerned with
) ) . can be spanned by, basis filters. Consider convolving
Certain BRDFs tend to beow-dimensional For exam-  each of thek,k, basis images with each of thg basis
ple, three basis images suffice to span images of a Lamijters to yieldk &, k, images. Any filtered image can then

bertian scene captured under different lighting cond#jon  pe expressed as a linear combination of these filtered basis
in the absence of shadows. Formally, we call a BREDF  jmages. Hence, the bound reduces té, k.

dimensional if the rank of the matri€ obtained by stack-

ing reflectance maps obtained under arbitrary sampling of .

illl?mination conditigns is always at mogt. In){he pr?es-g 2.3. Light Spectra

ence of such materials, the upper bound may be reduced to  yp until now, we assumed that all measurements are

S°i7, K (i), wherek (i) is the rank of the*” BRDF. done at a particular wavelength of light, and that the spec-
We again used the CUReT database for estimating thetrum of light is constant over all images. We now consider

dimensionality of each material in the database and foundthe case when the camera sensors and light spectra vary

that for 49 of the 61 material, the reconstruction error is between images. Surprisingly, in general, the appearance

less thanl 0% using9 basis vectors [6]. space of a simple Lambertian scene with a single infinite
plane can have unbounded dimension, even for grayscale
2.2.3 Varying Viewpoint images. Albedos, which were before treated as fixed scalars

for every pixel, are now functions of wavelength, allowing
Givenimages taken from different viewpoints, itis trivial  the scene to have arbitrary appearance for different wave-
extend the upper bound o k,k,, wherek, is the number  |engths. In the general case, using a linear response model,
of distinct viewpoints. However, the bound bfk,, holds
true if we know the pixel corresponding to a poiritin the
scene in every image. This correspondence can be found, L(x) = /Si()‘)li(I’ A)dA (12)
for instance, if the camera parameters of each image and
the 3D geometry of the scene are known. Using this, we yhere si()\) is the spectral response of the sens@nd
can rearrange the pixels in each image so thartheixel 1,z )\) is the intensity of light of wavelength arriving
in every image corresponds to the same scene point. Weyt the sensor. We begin by analyzing the general case, then

assume that every scene point is seen by every image (Wgjiscuss results for some common special cases.
relax this assumption in Section 3.1). We again consider the

rank of the matriXM obtained by stacking these rearranged
images. The argument for Theorem 1 still holds, with 231 The General Case
now defined as:
Consider the matrixM obtained by stacking images
R;(0) = / pr(w' wi) Ly, (W) (—w' D) do’.  (11) I;,Io,...,1,, captured by arbitrary sensors. We claim that
Q the rank ofM is bounded by:, %, k., wherek,, is the num-
ber of distinct albedos in the scene.

This result can again be derived from the reflectance map
interpretation. We define a reflectance map corresponding
to every pair of albedo and BRDF in the scene, with the inci-
Many real-world images are blurry due to camera shake, ordence of normals encoded in thematrix. More precisely,
have been otherwise filtered (e.g., software sharpening). W I, = 22‘11 Zfil R;rfthhl whereR,y,; is the image of a
extend the above result to filtered images. sphere with BRDFp; and albeday;, captured under identi-

wherew; is the viewing direction for image

2.2.4 Filtered Images



cal illumination conditions by the same sensor, and across all images. This can model outdoor illumination,
which is often approximated as a combination of sunlight

Do, k) = { 0 if &* # ry ora® # oy, O p* # py and skylight, each with its own spectrum [26]. Here, the
’ 1 otherwise bound can be seen to bgk,, k1, by writing the illumination
_ . . . (13) in thei'" image in the formy_ 1" | K;(\) Ly, (', A).
Again, we can writeM = 3, >, CyDp by stack- Similarly, consider the case whén(\) varies from im-
ing up theR.x;’s,. It follows thatrank(M) < kykpka. age to image but lies in a linear subspace of dimenaion

More generally, the albedos in a scene (as a function of poy jllumination in outdoor scenes, the spectra is well ap-

wavelength) may be spanned by basis albedos. It canbe  proximated by a two or three-dimensional subspace [26].
shown in a fashion similar to Section 2.2.1 that the bound The pound can be shown to bgk,, k. in this case, by writ-

of k,k, k. extends to this case as well. ing K,()) = E;@; () Ki(N).

2.3.2 Light Sources with Constant Spectra 2.3.3 RGB Images

Belhumeur and Kriegman [2] showed thatimages of aLam- mages captured by conventional cameras contain three

bertian scene lit by light sources of identical spectra@n b cojor channels. Consider RGB imagé#s, I, ..., L,

spanned by three basis images in the absence of shadow§yhere we concatenate the channels togethdp: =

We do a similar analysis in a more general setting. - [I}/12|I}]. Assume that each channel is captured by a sepa-
Assume that (a) BRDFs do not dependXr(b) all im-  rate sensor that is identical across all images,

ages are lit by light sources with a constant spectrum across

images (but with varying intensity and direction), and (t) a I (2) = /S (VL (2, A)dA (16)

images are captured by identical sensors with spectral re- ! T

sponses(A). Under these assumptions, the bound gf,,
can be seen to hold true.

Under assumption (b), we can writé (w',\) as
K(N) L%, (w') and hence,

Consider the matri®I¢ obtained by stacking channebf
all images. Under the assumptions of Section 2.3.2, we
know that the rank of this matrix is bounded byk,, and it
can be written adI¢ = CD¢ (The coefficients are embed-
ded in the matri>xC while the basis imag@’jk are stacked
- . -~ oz up in D). BecauseC does not depend an(From Eq. 15,
Lz, A) = K(A) /Q a®(N)p" (W W) Ly, (W) (—w'8)do” e can see that.()\) is encoded in the basis images, i.e.,
(14) D), the rank of the matriXVI obtained by concatenating
We can writel;(z, \) = K (\) 3, , ajr(i)B (z,A) by the channels and stacking them is also bounded iy,
invoking the basis image representation for the expression(We can writefM'|M? M?| = C[D'|D?D?)).
in the integral (Theorem 1), where the number of basis im-  In fact, we can go further and show that profiles corre-
ages]3§k’s is at mostt, k,,. Note that the coefficients donot  sponding to a particular pixel are identical across channel
depend on\ as wavelength dependent albedos are encodedsave for a scaling factor, i.e., there exigtgx) for each
in the basis images. Substituting into Eqg. 12, we get channel such thd¢ /k.(x) is same for alk. This can be
seen by substituting fdr; («, \) from Eq. 14 in Eq. 16 and

L(x) = Zajk(i)/s(A)K(A)B§k (2, \)d\ (15) writing:
7,k

P(i) = hele) | p7 (@ @)Ll (@) (- ")’ (07)
which implies thafl;(z) = >, ajk(i)B’§k (z) where the @
new basis images are obtained by integrating oyeire., where
B'j.(z) = [ s(\)K(NBI, (z,\)d\. Hence, these images
can also be spanned by at mést;,, basis images. ko(z) = /SC(A)K(/\)QI(/\)CD\ (18)
At first, these assumptions might appear too restrictive.
We tested assumption (a) using the CUReT database an
found strong support for it [6]. If albedos and camera spec-
tral responses are unconstrained, the scene may have an un- We started by proving an upper boundigf,, in Theo-
bounded rank. However, if the camera responses are simfem 1 and then showed that the same bound holds for im-
ilar, assumption (c) is a reasonable approximation. Otherages taken from different viewpoints and for linear fami-
assumptions may be relaxed by extending the result. For in-lies of BRDFs. In Section 2.2.2, we showed that certain
stance, consider the case where a scene is litbjight BRDFs allow the bound to be lowered. In Section 2.2.4,
sources, each with its own spectrum that stays constanit was shown how blurry (filtered) images can be handled

‘}.4. Summary



by raising the bound. Finally, we introduced wavelength in
Section 2.3. While in the most general case, the theoretical
bound can shown to be,%, k., the bound of,k, holds
under certain assumptions.

3. Results on Internet Photo Collections

The theoretical results in Section 2 show that linear mod-
els can model a broad range of images of a scene. Much of
the previous application of linear models has been to images
captured in the lab under controlled conditions. Here, we
apply it to a more challenging case, i.e., photos of popular
locations downloaded from photo sharing websites [5]. The
difficulties here stem from the wide variation in the scene
appearance. Moreover, the images are captured using many jils
different cameras and viewpoints.

Rank 1 Rank 3 Rank 10

3.1. Basis Computation Figure 2: Left: example image from the dataset. Right:
reconstruction obtained using3 and 10 basis images re-

Because these photos are taken from different view- spectively (Zoom into the PDF version to see details).
points, we first find pixel correspondences. We use the

Structure from Motion (SfM) system of Snavely et al. [24]
to recover the camera parameters. The 3D reconstruction
uses the multi view stereo method of Goesele et al. [8]. The
3D models aresimplified using gslim [7] to a mesh with

~ 300,000 faces. We use a simple representation where we
associate a color corresponding to each mesh vertex. Im-
ages in this representation (which can be thought of as a
texture map, can be treated in a fashion similar to images
taken from a fixed viewpoint with mesh vertices assuming
the role of pixels. However, a single image covers only a
part of the scene, i.e., therensssing datan each texture
map. To compute basis vectors with missing data, we use Basis 4 Basis 5

the EM based method of Srebro and Jaakkola [25] to com-Figure 4: First 5 basis images for Orvieto. Basis 1 resem-
pute SVD. However, the algorithm was found to be sensitive bles the mean. Bases 2 and 3 model Shading, and Bases 4
to initialization when the amount of missing data is large. and 5 specularities.

We use the method of Roweis [22] which fills the missing ) ]

data using EM based sensible PCA, to initialize. Please refer to the technical report for details [6].

Internet photo collections are often dominated by peo- 3.2. Evaluation
ple and other occluders who block the background scene.” ="

As our focus is modeling the scene and not the people, we We present results o6 datasets: Notre Dame Cathe-
start by manually removing images with significant occlud- dral (212 images), Statue of Liberty3(8 images), Orvieto
ers from which to compute@deanbasis. We will show later  Cathedral £28 images), Arc De Triomphe268 images),
how to handle occlusions in other images using this basis. Half Dome, Yosemiteq5 images) and the Moor249 im-

We cannot directly apply the ideas in Section 2.3.3 to ages). The Moon presents an interesting case due to its
these color images as the assumption of identical spectraetro-reflective nature. We are able to register the Moon
and identical sensors does not hold for these collections.images using SfM (There exists sufficient parallax for SfM
The selected clean set still has some outliers (e.g. cagt sha to work [14]) and then fit a sphere to the 3D points obtained.
ows) and processing the three channels independently proThe reconstruction is shown in [6].
ducesrainbowartifacts (examples in [6])) due to inconsis- All images were gamma corrected assuming= 2.2.
tent fits between color channels. Instead, we make someéNe used the green channel of the images to find a basis. We
simplifying assumptions that allow us to reconstruct the observed that the reconstructions visually look reasgnabl
other channels given the reconstruction of one. Hence, wegood even with three or four basis vectors. With ten ba-
choose to process only the green channel of these imagesis vectors, some of the finer details like specularitiel, se

Basis 1 Basis 2 Basis 3




Figure 3: Reconstruction of an image of Orvieto Cathedrimgis, 2, 3, 4 and5 basis vectors. The image on the right is the
original image.

shadowing, etc. are also modeled well (We use a basis of
size ten to generate results in Section 3.3). There is little
improvement in the reconstructions visually thereaftat, b
the numerical error stays &2% even for30 basis vectors.
This error can be explained by the fact that evendiean
set ofimages have a lot of noise. E.g., Half Dome’s view is
almost always partially occluded by trees. s v . g
Figure 2 shows an example image from these datasets - —
and the corresponding reconstruction foB and 10 basis Figure 5: View Expansion: The left image in each image
vectors. The top row (Notre Dame), shows that it becomespair shows the original image with limited viewing area.
possible to model the appearance of night scenes using & he rightimage shows the reconstructed image.

larger basis. However, observe that such scenes have light

sources close to the scene which violates our assumption oﬁan interpolate missing data, the derived _basis images (E.md
distant lighting. The configuration of lights fixedacross ence the reconstructions) cover the entire scene allowing

all nightimages and hence can be modeled by a single addiYs 1 _hglluc_inate how the parts of the scene, not vi_siblg in
tional basis. The second row shows the reconstruction of anth.e or.|g|nal Image, wogld have appeared under similar illu-
image of Arc De Triomphe demonstrating that it is possible mination conditions (Figure 5).
to approximate cast shadowing using a larger basis. For the

Moon, the appearance is modeled well using the first basis,3-3-2 Occluder Removal
while subsequent basis explain the shadows antkttiare Given the basis, we can project new images onto the com-

at trl](e telrln;lnatrc])r[lfs].lf we fougd that the rr;]odel doeg not. puted basis. We choose a projection approach that is robust
work well for the Half Dome dataset, as there are drastic i, qtjiers in the image. This allows us to handle occlud-

appearance Change_zs (such as seasonal snow). . ers; for instance the bird in Figure 6(a). More precisely, in
An image of Orvieto Cathedra_ll, W_hose faca_lde is highly o ger to project a new image ontdbasis images, we use a
specular, is analyzed separately in Figure 3. Figure 4 Show%?ANSAC approach where pixels are sampled randomly

t_he first5 basis.images. While the first basis §imply looks andk coefficients are computed. The number of pixels that
like the mean image, the second and the third model theyg \ithin 4 threshold of the original pixel values in the re-

shading. The fourt_h a_nd fifth bas_es seem to model view_ de'construction obtained using thelseoefficients are counted
pendent effects (highlights). Again, note that speculghhi asinliers. Finally, the sample with the largest number of in-

“?ht onlyhon a part o;.thhe-faca(?el |rr_1pI|e? that the viewer 'Sf liers is chosen and the estimate of coefficients is refined us-
close to the scene which Is a violation of our assumption of 4 o) the inliers. Again, we can first reconstruct the green

distant viewer. But as was the case in night SCenes, a parhannel, and then reconstruct red and blue channels from it
ticular configuration of viewpoint and the lighting diremti (explained in [6]). Some results are shown in Figure 6. See
can be modeled by a single additional basis image. [6] for larger versions of these images

3.3. Applications .
PP 4. Conclusion

We now show a few novel and interesting applications of ) )
linear scene appearance modeling. This paper proved that scene appearance is low-rank

under a variety of realistic conditions. These results are
motivated by models of shape (particularly for man-made
scenes), BRDFs, blur, and light spectra that approximate
As was mentioned in section 3.1, a single image might coverreal-world scenes. We demonstrated the application of low-
only part of the scene. However, since we use a method thatlimensional models to several large photo collections from

3.3.1 View Expansion
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