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Abstract

Low-rank approximation of image collections (e.g., via
PCA) is a popular tool in many areas of computer vision.
Yet, surprisingly little is known justifying the observation
that images of an object or scene tend to be low dimen-
sional, beyond the special case of Lambertian scenes. This
paper considers the question of how many basis images are
needed to span the space of images of a scene under real-
world lighting and viewing conditions, allowing for gen-
eral BRDFs. We establish new theoretical upper bounds
on the number of basis images necessary to represent a
wide variety of scenes under very general conditions, and
perform empirical studies to justify the assumptions. We
then demonstrate a number of novel applications of lin-
ear models for scene appearance for Internet photo col-
lections. These applications include, image reconstruction,
occluder-removal, and expanding field of view.

1. Introduction

Real world scenes vary in appearance as a function of
viewpoint, lighting, weather and other effects. What is the
dimensionalityof this appearance space? More specifically,
suppose you stacked all photos taken of a particular scene
as rows in a matrix – what is the rank of that matrix?1

It is well known that certain types of image collections
tend to be low-rank in practice, and can be spanned via
linear combination of a small number of basis views com-
puted via tools like Principle Component Analysis (PCA)
or Singular Value Decomposition (SVD). First exploited in
the early work on eigenfaces [12, 27], these rank-reduction
methods have become the basis for a broad range of suc-
cessful applications in recognition [18, 16], tracking [9],
background modeling [17], image-based rendering [28],
BRDF modeling [10, 15], compression and other domains.

In spite of the wide-spread use of rank-reduction on im-
ages, however, there is little theoretical justification that ap-

1By dimensionality, we refer to linear dimensionality in this paper.

pearance space should be low-rank in general. An exception
is the case of Lambertian scenes, for which a number of ele-
gant results exist. Shashua [23] proved that three images are
sufficient to span the full range of images of a Lambertian
scene rendered under distant lighting and a fixed viewpoint,
neglecting shadows. Belhumeur and Kriegman [2] consid-
ered the case of attached shadows, observing that the valid
images lie in a restricted range of 3D subspace which they
called theillumination cone. Basri and Jacobs [1], and Ra-
mamoorthi and Hanrahan [20] independently showed that
illumination cone is well approximated with9 basis images.
Ramamoorthi more recently [19] improved this bound to5
images, bringing the theory in line with empirical studies
on the dimensionality of face images [4].

Very little is known, however, about the dimensionality
of images ofreal-world scenes, composed of real shapes,
BRDFs, and illumination conditions. Consider, for exam-
ple, the images of tourist sites on Flickr [5], which exhibit
vast changes in appearance. While it may seem difficult
to prove anything about such collections, a key property of
real-world scenes is that they are not random. In particular,
man-made scenes tend to be dominated by a small number
of surface orientations. And while BRDFs can be very com-
plex, real BRDFs can be well-approximated by a low-rank
linear basis [15]. Similar considerations apply for illumi-
nation; for example, studies have shown that the space of
daylight spectra is roughly two- or three-dimensional [26].
Based on these observations, this paper introduces new the-
oretical upper bounds on the dimensionality of scene ap-
pearance (improving on previous results by Belhumeur and
Kriegman [2]). While we make a few limiting assump-
tions (distant lighting, distant viewer, no cast shadows, in-
terreflections or subsurface scattering), these results bring
the theory to the point where it can capture much of the ex-
treme variability in these Internet photo collections.

The highlights of this paper include a factorization
framework for analyzing dimensionality questions, intro-
duced in section 2. Using this framework, we prove
new upper bounds on the number of basis images, allow-
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Figure 1: Four interpretations of factorization of image ma-
trices. First, each image can be expressed as a linear combi-
nation of a set of basis images (a). Alternatively, the profile
of each pixel can be expressed as a linear combination of a
set of basis profiles (b). In the case of a Lambertian scene,
the basis profiles and basis images assume special meaning
(c). Finally, (d) shows the reflectance map interpretation.

ing for variable illumination direction and spectra, view-
point, BRDFs, and convolution effects (e.g., blur). Im-
portantly, all prior low-rank results for Lambertian scenes
[23, 2, 1, 20, 19] do not apply under variations in light
spectrum (even if the images are grayscale). We introduce
new results that allow the light spectrum to vary in certain
ways, greatly broadening the scope of application (e.g., to
outdoors). Finally we demonstrate a number of interesting
applications of low-rank linear models to problems in com-
putational photography (Section 3.3).

2. Rank of the Image Matrix

We present theoretical results in this section. We first
introduce a new framework to analyze the factorization of
images (Section 2.1) which yields new insights and results
in Section 2.2. Finally, we introduce wavelength (Section
2.3) bringing the theory closer to the real world images cap-
tured by cameras.

Throughout the paper, we assume that images are lit
by distant light sources and observed from distant view-
points. We ignore indirect illumination effects like transpar-
ent and translucent materials, interreflections, cast shadows
and subsurface scattering. Our theory does account for at-
tached shadows. Initially, we also make the assumption that
images are taken from a fixed viewpoint, which we relax in
Section 2.2.3.

2.1. Four Factorizations of the Image Matrix

Consider a set ofm, n-pixel images of a scene,
I1, I2, . . . , Im taken under varying illumination conditions.
Consider them × n matrix M obtained by stacking
I1, I2, .., Im as rows of the matrix. Each row ofM is an
image, and each column describes the appearance of a sin-
gle pixel, sayx, under different illumination conditions, re-

ferred to as theprofileof the pixel and denoted byPx, where
Px(i) = Ii(x).

Consider a factorization ofM into the product of two
rank-k matrices:

Mm×n = Cm×kDk×n. (1)

Such a factorization may be obtained by PCA or SVD, for
instance. We present four different interpretations of such a
factorization, shown in Figure 1.

2.1.1 Basis Images

First, the rows ofD can be interpreted as basis images, de-
noted byBI , and the rows ofC can be interpreted as coef-
ficients. This interpretation, shown in Figure 1(a), is com-
monly used. For instance, in work on eigenfaces [12], the
eigenvectors obtained from PCA comprise the basis images
(assuming mean subtracted data). Here each imageIi is a
linear combination of basis images:

Ii =

k
∑

j=1

aijB
I
j . (2)

2.1.2 Basis Profiles

Another way to interpret this factorization is that each col-
umn (profile)Pj of M can be interpreted as a linear com-
bination of columns ofC, with coefficients determined by
columns ofD, as shown in Figure 1(b). In this interpreta-
tion, the columns ofC form basis profiles, denoted byBP :

Pj =

k
∑

i=1

bjiB
P
i . (3)

2.1.3 The Lambertian Case

For Lambertian scenes, neglectinganyshadows, the rank of
M is 3, and the basis profiles and the basis images assume
a special meaning, shown in Figure 1(c).D is a3 × n ma-
trix, where thejth column ofD encodes the normal times
the albedo at thejth pixel in the scene.C is am × 3 ma-
trix where theith row encodes the lighting direction times
the light intensity for theith image. Hence, the basis im-
ages represent scene properties (normals and albedos) and
the basis profiles encode illumination properties. In partic-
ular, each basis profile contains the light intensity along a
coordinate axis for each image.

2.1.4 The Reflectance Map Interpretation

The reflectance map [11], is defined for an image of a scene
with a single BRDF as a functionR(n̂) that maps scene nor-
mals to image intensity.R(n̂) can be encoded as an image



of a sphere with the same BRDF as the scene and taken from
the same viewpoint under identical illumination conditions.

We denote the image of the sphere corresponding toIi

by Ri, and write
Ii

T = Ri
T
D (4)

whereD is defined as:

D(j, k) =

{

0 if n̂
k 6= m̂j

1 otherwise
(5)

wherem̂j is the normal at thejth pixel of Ri andn̂
k is the

normal at thekth pixel in the scene. Thekth column ofD
can be thought of as anormal indicator functionvk.

It often happens that the BRDF is same across the scene
save for a scaling factor (the albedo). This factorization can
also incorporate per pixel albedos if we define thekth col-
umn ofD asαk

vk whereαk is the albedo of thekth pixel.
Now, observing thatD does not depend oni, one can

write M = CD whereC contains the reflectance maps
Ri’s stacked as rows.

We can alternately defineRi(n̂) using the rendering
equation which under our assumptions, can be written as

Ii(x) =

∫

Ω

αxρx(ω′, ω)Lfi
(ω′)(−ω̂′.n̂

x
)+dω′ (6)

where the integral is over a hemisphere of inward direc-
tions ω′, ω is the viewing direction for pointx, ρx is the
reflectance function at pointx (evaluated atω′, ω), Lfi

(ω′)
is the light arriving from directionω′ for imageIi, andn̂

x

is the normal atx. The + subscript on the dot product indi-
cates that it is clamped below to0 to account for attached
shadows.

Given this, we can defineRi(n̂) as

Ri(n̂) =

∫

Ω

ρ(ω′, ω)Lfi
(ω′)(−ω̂′.n̂)+dω′ (7)

whereρx has been replaced byρ, asRi represents a scene
with a single BRDF.

2.2. Upper Bound on Rank ofM

Belhumeur and Kriegman [2] proved that, given an arbi-
trary scene with a single material andkn distinct normals,
the space of images of the scene taken from a fixed, dis-
tant viewpoint with distant lighting and no cast shadows
is exactlykn-dimensional. This result justifies the use of
linear models for real-world scenes. For instance, many
man-made scenes consist of large planar regions (such as
walls and ground), and therefore contain only a small num-
ber of distinct normals. Curved surfaces may also be ap-
proximated by piecewise planar surfaces.

We first show how an upper bound ofkn can be seen
to hold true for a scene with a single BRDF using the re-
flectance map interpretation of the factorization and then
extend it to a more general case.

From the reflectance map interpretationM = CD, it is
easy to see that onlykn rows ofD will be non-zero when
the number of distinct normals in the scene iskn. Hence,
rank(D) ≤ kn , which gives us an upper bound ofkn on
rank(M) as well.

Now consider the more general case where there arekρ

materials andkn normals in the scene. In this case, we first
define reflectance maps corresponding to every BRDF for
each image, i.e.,

Ii
T =

kρ
∑

l=1

Ril
T
Dl (8)

whereDl now encodes the distribution of normals corre-
sponding to thelth material, i.e.,

Dl(j, k) =

{

0 if n̂
k 6= m̂j or ρk 6= ρl

αk otherwise
(9)

Hence, M=
∑kρ

l=1
ClDl, which implies that

rank(M)≤kρkn. More preciselyrank(M)≤
∑kρ

l=1
N(l)

whereN(l) is the number of orientations corresponding to
materiall. Hence we have proven the following:

Theorem 1 Consider a scene withkρ different BRDFs and
kn distinct normals. Consider the imagesI1, I2, . . . , Im of
the scene obtained from a fixed distant viewpoint under dif-
ferent distant illuminationsLf1

, Lf2
, . . . , Lfm

. Assuming
that there are no cast shadows, the rank of the matrixM
obtained by stackingI1, I2..Im as rows is at mostkρkn.

It is also instructive to writeM =
∑kρ

l=1
ClDl in the

form M = CD so that basis images and basis profiles can
be explicitly defined. This can be done by stackingCl side
by side, i.e.,C = [C1|C2|..|Ckρ

] and stackingDl one over
another. Finally, we can remove all zero rows fromD and
corresponding columns fromC leaving at mostkρkn rows
in D, which correspond to basis images, and basis profiles
are the remaining columns ofC. The columns ofD are of
the formdk = αk

vk wherevk is a0, 1 vector that can be
thought of as anormal-material indicator function.

The result may be modified to accommodate anisotropic
BRDFs as well. For anisotropic materials, one needs to
parametrize by both theorientationand the normal. Hence,
one can derive the same bound wherekn now refers to num-
ber of distinct orientations times normals in the scene.

In the following sections, we extend this result to a num-
ber of common scenarios.

2.2.1 Linear Families of BRDFs

While the world is composed of diverse materials, it has
been argued [21, 15] that the space of BRDFs is low dimen-
sional. We also verify this by conducting experiments on
CUReT [3] database of BRDFs [6].



Thus, we now generalize to the case whenρx is con-
tained in the linear span of{ρ1, ρ2, . . . , ρkρ

}, i.e., ρx =

Σ
kρ

l=1
cl(x)ρl. In this case,Ii can be represented as a sum of

matrix product,Ii
T =

∑kρ

l=1
Ril

T
Dl, where

Dl(j, k) =

{

0 if n̂
k 6= m̂j

αxcl(x) otherwise
(10)

Hence the upper bound ofkρkn still holds, i.e., rank is di-
mensionality of BRDF family times the number of normals.

2.2.2 Low-dimensional BRDFs

Certain BRDFs tend to below-dimensional. For exam-
ple, three basis images suffice to span images of a Lam-
bertian scene captured under different lighting conditions,
in the absence of shadows. Formally, we call a BRDFK-
dimensional if the rank of the matrixC obtained by stack-
ing reflectance maps obtained under arbitrary sampling of
illumination conditions is always at mostK. In the pres-
ence of such materials, the upper bound may be reduced to
∑kρ

i=1 K(i), whereK(i) is the rank of theith BRDF.
We again used the CUReT database for estimating the

dimensionality of each material in the database and found
that for 49 of the 61 material, the reconstruction error is
less than10% using9 basis vectors [6].

2.2.3 Varying Viewpoint

Given images taken from different viewpoints, it is trivialto
extend the upper bound tokvkρkn wherekv is the number
of distinct viewpoints. However, the bound ofkρkn holds
true if we know the pixel corresponding to a pointx′ in the
scene in every image. This correspondence can be found,
for instance, if the camera parameters of each image and
the 3D geometry of the scene are known. Using this, we
can rearrange the pixels in each image so that thexth pixel
in every image corresponds to the same scene point. We
assume that every scene point is seen by every image (We
relax this assumption in Section 3.1). We again consider the
rank of the matrixM obtained by stacking these rearranged
images. The argument for Theorem 1 still holds, withRil

now defined as:

Ril(n̂) =

∫

Ω

ρl(ω
′, ωi)Lfi

(ω′)(−ω̂′.n̂)+dω′. (11)

whereωi is the viewing direction for imagei.

2.2.4 Filtered Images

Many real-world images are blurry due to camera shake, or
have been otherwise filtered (e.g., software sharpening). We
extend the above result to filtered images.

Consider the family of images obtained by convolv-
ing image I(x, y) by an arbitraryK × K kernel F.
The resulting image can be expressed asIconv(x, y) =
∑K

i=1

∑K

j=1
F(i, j)I(x− i, y − j). Since the space of each

of the shifted imagesI(x − i, y − j) is at most rankkρkn,
it follows that the space of all filtered images of the scene is
at most rankK2kρkn.

An important special case is the family of radially sym-
metric filters (e.g., blur, sharpen). These filters can be
spanned by a fewbasis filters(The basis filters are simply
circles of varying radii.)

Suppose that the family of filters we are concerned with
can be spanned bykf basis filters. Consider convolving
each of thekρkn basis images with each of thekf basis
filters to yieldkfkρkn images. Any filtered image can then
be expressed as a linear combination of these filtered basis
images. Hence, the bound reduces tokfkρkn.

2.3. Light Spectra

Up until now, we assumed that all measurements are
done at a particular wavelength of light, and that the spec-
trum of light is constant over all images. We now consider
the case when the camera sensors and light spectra vary
between images. Surprisingly, in general, the appearance
space of a simple Lambertian scene with a single infinite
plane can have unbounded dimension, even for grayscale
images. Albedos, which were before treated as fixed scalars
for every pixel, are now functions of wavelength, allowing
the scene to have arbitrary appearance for different wave-
lengths. In the general case, using a linear response model,

Ii(x) =

∫

si(λ)Ii(x, λ)dλ (12)

wheresi(λ) is the spectral response of the sensori and
Ii(x, λ) is the intensity of light of wavelengthλ arriving
at the sensor. We begin by analyzing the general case, then
discuss results for some common special cases.

2.3.1 The General Case

Consider the matrixM obtained by stacking images
I1, I2, . . . , Im captured by arbitrary sensors. We claim that
the rank ofM is bounded bykρknkα, wherekα is the num-
ber of distinct albedos in the scene.

This result can again be derived from the reflectance map
interpretation. We define a reflectance map corresponding
to every pair of albedo and BRDF in the scene, with the inci-
dence of normals encoded in theD matrix. More precisely,
Ii

T =
∑kα

h=1

∑kρ

l=1
R

T
ihlDhl whereRihl is the image of a

sphere with BRDFρl and albedoαh captured under identi-



cal illumination conditions by the same sensor, and

Dhl(j, k) =

{

0 if n̂
k 6= m̂j or αx 6= αh or ρx 6= ρl

1 otherwise
(13)

Again, we can writeM =
∑kα

h=1

∑kρ

l=1
ChlDhl by stack-

ing up theRihl’s,. It follows thatrank(M) ≤ kρknkα.
More generally, the albedos in a scene (as a function of

wavelength) may be spanned bykα basis albedos. It can be
shown in a fashion similar to Section 2.2.1 that the bound
of kρknkα extends to this case as well.

2.3.2 Light Sources with Constant Spectra

Belhumeur and Kriegman [2] showed that images of a Lam-
bertian scene lit by light sources of identical spectra can be
spanned by three basis images in the absence of shadows.
We do a similar analysis in a more general setting.

Assume that (a) BRDFs do not depend onλ, (b) all im-
ages are lit by light sources with a constant spectrum across
images (but with varying intensity and direction), and (c) all
images are captured by identical sensors with spectral re-
sponses(λ). Under these assumptions, the bound ofkρkn

can be seen to hold true.
Under assumption (b), we can writeLfi

(ω′, λ) as
K(λ)L′

fi
(ω′) and hence,

Ii(x, λ) = K(λ)

∫

Ω

αx(λ)ρx(ω′, ω)L′

fi
(ω′)(−ω̂′.n̂

x
)+dω′

(14)
We can writeIi(x, λ) = K(λ)

∑

j,k ajk(i)BI
jk(x, λ) by

invoking the basis image representation for the expression
in the integral (Theorem 1), where the number of basis im-
agesBI

jk ’s is at mostkρkn. Note that the coefficients do not
depend onλ as wavelength dependent albedos are encoded
in the basis images. Substituting into Eq. 12, we get

Ii(x) =
∑

j,k

ajk(i)

∫

s(λ)K(λ)BI
jk(x, λ)dλ (15)

which implies thatIi(x) =
∑

jk ajk(i)B′I
jk(x) where the

new basis images are obtained by integrating overλ, i.e.,
B

′I
jk(x) =

∫

s(λ)K(λ)BI
jk(x, λ)dλ. Hence, these images

can also be spanned by at mostkρkn basis images.
At first, these assumptions might appear too restrictive.

We tested assumption (a) using the CUReT database and
found strong support for it [6]. If albedos and camera spec-
tral responses are unconstrained, the scene may have an un-
bounded rank. However, if the camera responses are sim-
ilar, assumption (c) is a reasonable approximation. Other
assumptions may be relaxed by extending the result. For in-
stance, consider the case where a scene is lit bykL light
sources, each with its own spectrum that stays constant

across all images. This can model outdoor illumination,
which is often approximated as a combination of sunlight
and skylight, each with its own spectrum [26]. Here, the
bound can be seen to bekρknkL by writing the illumination
in theith image in the form

∑kl

l=1
Kl(λ)Llfi

(ω′, λ).
Similarly, consider the case whenK(λ) varies from im-

age to image but lies in a linear subspace of dimensionks.
For illumination in outdoor scenes, the spectra is well ap-
proximated by a two or three-dimensional subspace [26].
The bound can be shown to bekρknks in this case, by writ-
ing Ki(λ) =

∑ks

l=1
cl(i)Kl(λ).

2.3.3 RGB Images

Images captured by conventional cameras contain three
color channels. Consider RGB imagesI1, I2, . . . , Im,
where we concatenate the channels together:Ii =
[I1

i |I
2
i |I

3
i ]. Assume that each channel is captured by a sepa-

rate sensor that is identical across all images,

I
c
i (x) =

∫

sc(λ)Ii(x, λ)dλ (16)

Consider the matrixMc obtained by stacking channelc of
all images. Under the assumptions of Section 2.3.2, we
know that the rank of this matrix is bounded bykρkn and it
can be written asMc = CD

c (The coefficients are embed-
ded in the matrixC while the basis imagesB′I

jk are stacked
up in D). BecauseC does not depend onc (From Eq. 15,
we can see thatsc(λ) is encoded in the basis images, i.e.,
D

c), the rank of the matrixM obtained by concatenating
the channels and stacking them is also bounded bykρkn

(We can write[M1|M2|M3] = C[D1|D2|D3]).
In fact, we can go further and show that profiles corre-

sponding to a particular pixel are identical across channels
save for a scaling factor, i.e., there existskc(x) for each
channel such thatPc

x/kc(x) is same for allc. This can be
seen by substituting forIi(x, λ) from Eq. 14 in Eq. 16 and
writing:

P
c
x(i) = kc(x)

∫

Ω

ρx(ω′, ω)L′

fi
(ω′)(−ω̂′.n̂

x
)+dω′ (17)

where

kc(x) =

∫

sc(λ)K(λ)αx(λ)dλ (18)

2.4. Summary

We started by proving an upper bound ofkρkn in Theo-
rem 1 and then showed that the same bound holds for im-
ages taken from different viewpoints and for linear fami-
lies of BRDFs. In Section 2.2.2, we showed that certain
BRDFs allow the bound to be lowered. In Section 2.2.4,
it was shown how blurry (filtered) images can be handled



by raising the bound. Finally, we introduced wavelength in
Section 2.3. While in the most general case, the theoretical
bound can shown to bekρknkα, the bound ofkρkn holds
under certain assumptions.

3. Results on Internet Photo Collections

The theoretical results in Section 2 show that linear mod-
els can model a broad range of images of a scene. Much of
the previous application of linear models has been to images
captured in the lab under controlled conditions. Here, we
apply it to a more challenging case, i.e., photos of popular
locations downloaded from photo sharing websites [5]. The
difficulties here stem from the wide variation in the scene
appearance. Moreover, the images are captured using many
different cameras and viewpoints.

3.1. Basis Computation

Because these photos are taken from different view-
points, we first find pixel correspondences. We use the
Structure from Motion (SfM) system of Snavely et al. [24]
to recover the camera parameters. The 3D reconstruction
uses the multi view stereo method of Goesele et al. [8]. The
3D models aresimplifiedusing qslim [7] to a mesh with
∼ 300, 000 faces. We use a simple representation where we
associate a color corresponding to each mesh vertex. Im-
ages in this representation (which can be thought of as a
texture map), can be treated in a fashion similar to images
taken from a fixed viewpoint with mesh vertices assuming
the role of pixels. However, a single image covers only a
part of the scene, i.e., there ismissing datain each texture
map. To compute basis vectors with missing data, we use
the EM based method of Srebro and Jaakkola [25] to com-
pute SVD. However, the algorithm was found to be sensitive
to initialization when the amount of missing data is large.
We use the method of Roweis [22] which fills the missing
data using EM based sensible PCA, to initialize.

Internet photo collections are often dominated by peo-
ple and other occluders who block the background scene.
As our focus is modeling the scene and not the people, we
start by manually removing images with significant occlud-
ers from which to compute acleanbasis. We will show later
how to handle occlusions in other images using this basis.

We cannot directly apply the ideas in Section 2.3.3 to
these color images as the assumption of identical spectra
and identical sensors does not hold for these collections.
The selected clean set still has some outliers (e.g. cast shad-
ows) and processing the three channels independently pro-
ducesrainbowartifacts (examples in [6])) due to inconsis-
tent fits between color channels. Instead, we make some
simplifying assumptions that allow us to reconstruct the
other channels given the reconstruction of one. Hence, we
choose to process only the green channel of these images.

Rank 1 Rank 3 Rank 10

Figure 2: Left: example image from the dataset. Right:
reconstruction obtained using1, 3 and10 basis images re-
spectively (Zoom into the PDF version to see details).

Basis 1 Basis 2 Basis 3

Basis 4 Basis 5
Figure 4: First 5 basis images for Orvieto. Basis 1 resem-
bles the mean. Bases 2 and 3 model shading, and Bases 4
and 5 specularities.

Please refer to the technical report for details [6].

3.2. Evaluation

We present results on6 datasets: Notre Dame Cathe-
dral (212 images), Statue of Liberty (318 images), Orvieto
Cathedral (228 images), Arc De Triomphe (268 images),
Half Dome, Yosemite (95 images) and the Moon (259 im-
ages). The Moon presents an interesting case due to its
retro-reflective nature. We are able to register the Moon
images using SfM (There exists sufficient parallax for SfM
to work [14]) and then fit a sphere to the 3D points obtained.
The reconstruction is shown in [6].

All images were gamma corrected assumingγ = 2.2.
We used the green channel of the images to find a basis. We
observed that the reconstructions visually look reasonably
good even with three or four basis vectors. With ten ba-
sis vectors, some of the finer details like specularities, self



Figure 3: Reconstruction of an image of Orvieto Cathedral using 1, 2, 3, 4 and5 basis vectors. The image on the right is the
original image.

shadowing, etc. are also modeled well (We use a basis of
size ten to generate results in Section 3.3). There is little
improvement in the reconstructions visually thereafter, but
the numerical error stays at12% even for30 basis vectors.
This error can be explained by the fact that even theclean
set of images have a lot of noise. E.g., Half Dome’s view is
almost always partially occluded by trees.

Figure 2 shows an example image from these datasets
and the corresponding reconstruction for1, 3 and10 basis
vectors. The top row (Notre Dame), shows that it becomes
possible to model the appearance of night scenes using a
larger basis. However, observe that such scenes have light
sources close to the scene which violates our assumption of
distant lighting. The configuration of lights isfixedacross
all night images and hence can be modeled by a single addi-
tional basis. The second row shows the reconstruction of an
image of Arc De Triomphe demonstrating that it is possible
to approximate cast shadowing using a larger basis. For the
Moon, the appearance is modeled well using the first basis,
while subsequent basis explain the shadows and thetexture
at the terminator[13]. We found that the model does not
work well for the Half Dome dataset, as there are drastic
appearance changes (such as seasonal snow).

An image of Orvieto Cathedral, whose facade is highly
specular, is analyzed separately in Figure 3. Figure 4 shows
the first5 basis images. While the first basis simply looks
like the mean image, the second and the third model the
shading. The fourth and fifth bases seem to model view de-
pendent effects (highlights). Again, note that specular high-
light only on a part of the facade implies that the viewer is
close to the scene which is a violation of our assumption of
distant viewer. But as was the case in night scenes, a par-
ticular configuration of viewpoint and the lighting direction
can be modeled by a single additional basis image.

3.3. Applications

We now show a few novel and interesting applications of
linear scene appearance modeling.

3.3.1 View Expansion

As was mentioned in section 3.1, a single image might cover
only part of the scene. However, since we use a method that

Figure 5: View Expansion: The left image in each image
pair shows the original image with limited viewing area.
The right image shows the reconstructed image.

can interpolate missing data, the derived basis images (and
hence the reconstructions) cover the entire scene allowing
us to hallucinate how the parts of the scene, not visible in
the original image, would have appeared under similar illu-
mination conditions (Figure 5).

3.3.2 Occluder Removal

Given the basis, we can project new images onto the com-
puted basis. We choose a projection approach that is robust
to outliers in the image. This allows us to handle occlud-
ers; for instance the bird in Figure 6(a). More precisely, in
order to project a new image ontok basis images, we use a
RANSAC approach wherek pixels are sampled randomly
andk coefficients are computed. The number of pixels that
lie within a threshold of the original pixel values in the re-
construction obtained using thesek coefficients are counted
asinliers. Finally, the sample with the largest number of in-
liers is chosen and the estimate of coefficients is refined us-
ing all the inliers. Again, we can first reconstruct the green
channel, and then reconstruct red and blue channels from it
(explained in [6]). Some results are shown in Figure 6. See
[6] for larger versions of these images.

4. Conclusion

This paper proved that scene appearance is low-rank
under a variety of realistic conditions. These results are
motivated by models of shape (particularly for man-made
scenes), BRDFs, blur, and light spectra that approximate
real-world scenes. We demonstrated the application of low-
dimensional models to several large photo collections from



(a) (b)

(c) (d)

(e) (f)

Figure 6: Occluder removal, where the occluder is removed
and the scene behind is rendered under the same illumina-
tion conditions by robustly solving for basis image coeffi-
cients. (c) shows an example where the cast shadows are
removed while the self shadows (which occur in large num-
ber of images and are modeled by the basis) are preserved.

the Internet, and showed compelling results for image re-
construction, view expansion, and occluder removal.
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